Stereochemistry | ABSOLUTE |
Molecular Formula | C24H28N6O3 |
Molecular Weight | 448.5175 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 1 / 1 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
O=C1C=CC2=C3N1C[C@@H](CN4CCC(CC4)NCC5=CC6=C(OCCC6)C=N5)N3C(=O)C=N2
InChI
InChIKey=PZFAZQUREQIODZ-LJQANCHMSA-N
InChI=1S/C24H28N6O3/c31-22-4-3-20-24-29(22)15-19(30(24)23(32)13-27-20)14-28-7-5-17(6-8-28)25-11-18-10-16-2-1-9-33-21(16)12-26-18/h3-4,10,12-13,17,19,25H,1-2,5-9,11,14-15H2/t19-/m1/s1
Molecular Formula | C24H28N6O3 |
Molecular Weight | 448.5175 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ABSOLUTE |
Additional Stereochemistry | No |
Defined Stereocenters | 1 / 1 |
E/Z Centers | 0 |
Optical Activity | UNSPECIFIED |
Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that selectively inhibits bacterial DNA gyrase and topoisomerase IV by a unique mechanism, one that is not utilized by any currently approved human therapeutic agent. As a consequence of its novel mode of action, gepotidacin is active in vitro against target pathogens carrying resistance determinants to established antibacterials, including fluoroquinolones. Gepotidacin has demonstrated in vitro activity against key pathogens, including drug-resistant strains, associated with a range of conventional and biothreat infections. GlaxoSmithKline is developing Gepotidacin for the treatment of gonorrhoea and skin and soft tissue infections.
Originator
Approval Year
Cmax
AUC
T1/2
Overview
CYP3A4 | CYP2C9 | CYP2D6 | hERG |
---|---|---|---|
OverviewOther
Other Inhibitor | Other Substrate | Other Inducer |
---|---|---|
Drug as victim
Tox targets
Sourcing
PubMed
Patents
Sample Use Guides
This phase 2, randomized, 2-part, multicenter, dose-ranging, response-adaptive study with optional intravenous-oral switch evaluated the efficacy and safety of gepotidacin for the treatment of Gram-positive acute bacterial skin and skin structure infections in 122 adult patients in the United States. The study had a double-blind phase (part 1; intravenous [750 mg or 1,000 mg every 12 h {q12h}]) and an open-label phase (part 2; intravenous [750 mg q12h, 1,000 mg q12h, or 1,000 q8h]). The primary endpoint was a composite of efficacy and safety which consisted of the early cure rate and the withdrawal rate due to drug-related adverse events and utilized a clinical utility index for dose selection. At the early efficacy visit (48 to 72 h after the first dose), the 750-mg q12h and 1,000-mg q8h groups met prespecified success criteria for clinical utility in terms of efficacy and safety; however, the 1,000-mg q12h group did not meet these criteria due to observed lower efficacy rates.
Route of Administration:
Intravenous
The in vitro activities of gepotidacin were comparable against methicillin-susceptible and -resistant Staphylococcus aureus (MSSA and MRSA, respectively) isolates (MIC90, 0.5 μg/ml). The gepotidacin MIC90s were as follows (in micrograms per milliliter) for the indicated bacteria: Streptococcus pyogenes, 0.25; Escherichia coli, 2; Moraxella catarrhalis, ≤ 0.06; Streptococcus pneumoniae (0.25), Haemophilus influenzae, 1; Clostridium perfringens, 0.5; and Shigella spp., 1, including levofloxacin-resistant subsets.