Stereochemistry | ACHIRAL |
Molecular Formula | C7H4NO3S.H4N |
Molecular Weight | 200.215 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
[NH4+].O=C1[N-]S(=O)(=O)C2=C1C=CC=C2
InChI
InChIKey=XTPLQANXHDDXIH-UHFFFAOYSA-N
InChI=1S/C7H5NO3S.H3N/c9-7-5-3-1-2-4-6(5)12(10,11)8-7;/h1-4H,(H,8,9);1H3
Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Originator
Approval Year
Targets
Primary Target | Pharmacology | Condition | Potency |
---|---|---|---|
Conditions
Condition | Modality | Targets | Highest Phase | Product |
---|---|---|---|---|
AUC
Sourcing
PubMed
Patents
Sample Use Guides
no more than 80 to 3000 mg saccharin per kilogram or litre should be used
Route of Administration:
Oral
After assaying for prolactin (PRL) in saccharin-treated cultures, it was observed that this sweetener is also capable of stimulating PRL production two- to sixfold in a dose-dependent manner. Enhancement of PRL production can be observed at 0.5 mM saccharin, yet this is 10 times less than the saccharin concentration required to alter cell shape. These effects of saccharin on cell morphology and on PRL production are reversible in rat pituitary tumor cells (GH4C1). When added to cultures along with maximal concentrations of epidermal growth factor (EGF) or thyrotropin-releasing hormone (TRH), the effects of saccharin on PRL production are additive, suggesting that the actions of saccharin are mediated by a somewhat different pathway from that of the peptide hormones