{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
sulfamerazine
to a specific field?
There is one exact (name or code) match for sulfamerazine
Status:
First approved in 1943
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfamerazine is a sulfonamide antibiotic, which acts by inhibiting folic acid synthesis in bacterias. The primary target of sulfamerazine is believed to be dihydropteroate synthetase. Sulfamerazine (in comination with Sulfadiazine and Sulfamethazine) was used in the US under different names, including the earliest brand of Neotrizine. Nowdays, the drugs containing sulfamerazine are no longer available for use in humans in the US, however, they may be prescribed for veterinary purposes.
Showing 1 - 8 of 8 results
Status:
First approved in 1943
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfamerazine is a sulfonamide antibiotic, which acts by inhibiting folic acid synthesis in bacterias. The primary target of sulfamerazine is believed to be dihydropteroate synthetase. Sulfamerazine (in comination with Sulfadiazine and Sulfamethazine) was used in the US under different names, including the earliest brand of Neotrizine. Nowdays, the drugs containing sulfamerazine are no longer available for use in humans in the US, however, they may be prescribed for veterinary purposes.
Status:
US Approved Rx
(2010)
Source:
ANDA090828
(2010)
Source URL:
First approved in 1973
Source:
NDA017376
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Source:
SULFADIAZINE by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
Possibly Marketed Outside US
Source:
POULTRYSULFA Soluble Powder by Merck
Source URL:
First approved in 2016
Source:
NADA100094
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfaquinoxaline is a veterinary drug, which can be given to animals to treat coccidiosis and Acute Fowl cholera. It has often used in combinations with others drugs. It had its origins in the chemical synthetic program that sprang from the introduction of sulfonamide drugs into human medicine in the 1930s. The program was sustained through the years of World War II despite declining clinical use of that chemical class. Several sulfa drugs were known to be active against the sporozoan parasite (Plasmodium spp.) that causes malaria, but were not satisfactory in clinical practice. A sulfonamide that had a long plasma half-life would ipso facto be considered promising as an antimalarial drug. Sulfaquinoxaline, synthesized during the war, was such a compound. It proved too toxic to be used in human malaria, but was found to be a superior agent against another sporozoan parasite, Eimeria spp., the causative agent of coccidiosis in domestic chickens. In 1948 sulfaquinoxaline was introduced commercially as a poultry coccidiostat. The action mechanism of sulfaquinoxaline is to inhibit the dihydrofolate synthetase to encumber the nucleate synthesis of bacterium and coccidian its active peak to coccidian is at the second schizont stage (the fourth day of coccidial life cycle), so it will not affect the anti-coccidial immunity in chicken.
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Source:
SULFADIAZINE by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Source:
SULFADIAZINE by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Previously Marketed
Source:
SULFALOID by FOREST PHARMS
(1982)
Source URL:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).
Status:
First approved in 1943
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfamerazine is a sulfonamide antibiotic, which acts by inhibiting folic acid synthesis in bacterias. The primary target of sulfamerazine is believed to be dihydropteroate synthetase. Sulfamerazine (in comination with Sulfadiazine and Sulfamethazine) was used in the US under different names, including the earliest brand of Neotrizine. Nowdays, the drugs containing sulfamerazine are no longer available for use in humans in the US, however, they may be prescribed for veterinary purposes.