U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 26 results

Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for: • First-line therapy in combination with 5-fluorouracil and leucovorin for patients with metastatic carcinoma of the colon or rectum. • Patients with metastatic carcinoma of the colon or rectum whose disease has recurred or progressed following initial fluorouracil-based therapy. Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex and prevent religation of these single-strand breaks. Current research suggests that the cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA, and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand breaks.
Prilocaine is a local anesthetic that is similar pharmacologically to lidocaine. Prilocaine binds to the intracellular surface of sodium channels which blocks the subsequent influx of sodium into the cell. Action potential propagation and never function is, therefore, prevented. This block is reversible and when the drug diffuses away from the cell, sodium channel function is restored and nerve propagation returns. Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Currently, Prilocaine is used most often for infiltration anesthesia in dentistry.
Cocaine is an alkaloid ester extracted from the leaves of plants including coca. Cocaine is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar which can result in additional toxicity. Following repeated doses, a person may have decreased the ability to feel pleasure and be very physically tired. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood-brain barrier and may lead to the breakdown of the barrier.
Status:
Investigational
Source:
NCT00124696: Phase 1 Interventional Completed Cocaine-Related Disorders
(2002)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Cocaethylene is the ethyl ester of benzoylecgonine. Cocaethylene is formed in the liver after concurrent use of cocaine and alcohol. Cocaethylene works by blocking the dopamine transporter on dopaminergic presynaptic nerve terminals in the brain. It increases dopamine synaptic content, provoking enhanced postsynaptic receptor stimulation, resulting in euphoria, reinforcement, and self-administration. Compared to cocaine, which is a methyl ether of benzoylecgonine, cocaethylene has three to five times larger half-life in plasma. Cocaethylene is associated with seizures, liver damage and compromised the functioning of the immune system. It carries an 18-25 fold increase in risk for immediate death compared to cocaine alone.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)