{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for uridine in Relationship Comments (approximate match)
Showing 1 - 5 of 5 results
Status:
US Approved Rx
(2015)
Source:
NDA207561
(2015)
Source URL:
First approved in 2012
Source:
NDA203100
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Elvitegravir is a human immunodeficiency virus type 1 (HIV-1) integrase strand transfer inhibitor used in combination with cobicistat, emtricitabine and tenofovir alafenamid (GENVOYA®) for the treatment of HIV-1 infection in antiretroviral treatment-experienced adults. Because integrase is necessary for viral replication, inhibition prevents the integration of HIV-1 DNA into the host genome and thereby blocks the formation of the HIV-1 provirus and resulting propagation of the viral infection.
Status:
US Approved Rx
(2021)
Source:
NDA213801
(2021)
Source URL:
First approved in 2012
Source:
NDA202611
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Mirabegron (trade name Myrbetriq in the US and Betmiga in Europe) is a drug for the treatment of overactive bladder (OAB). It was developed by Astellas Pharma and was approved in the United States in July 2012. Originally developed as a treatment for diabetes, the development of mirabegron was later refocused to OAB. Mirabegron is an orally bioavailable agonist of the human beta-3 adrenergic receptor (ADRB3), with muscle relaxing, neuroprotective and potential antineoplastic activities. Upon oral administration, mirabegron binds to and activates ADRB3, which leads to smooth muscle relaxation. Mirabegron also restores sympathetic stimulation in mesenchymal stem cell (MSC) niches, inhibits JAK2-mutated hematopoietic stem cell (HSC) expansion and blocks the progression of myeloproliferative neoplasms (MPNs). Lack of sympathetic stimulation of the MSC and HSC niche is associated with the development of MPNs.
Status:
Investigational
Source:
INN:roducitabine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fluorocyclopentenylcytosine (RX-3117) is a novel small molecule nucleoside compound that is incorporated into DNA or RNA of cancer cells and inhibits both
DNA and RNA synthesis which induces apoptotic cell death of tumor cells. Fluorocyclopentenylcytosine also mediates the down-regulation of DNA
methyltransferase 1 (DNMT1), an enzyme responsible for the methylation of cytosine residues on newly synthesized DNA and
also a target for anticancer therapies. Preclinical studies have shown Fluorocyclopentenylcytosine to be effective in both inhibiting the growth of
various human cancer xenograft models, including colon, lung, renal and pancreas, as well as overcoming chemotherapeutic
drug resistance.
Fluorocyclopentenylcytosine has demonstrated a broad spectrum anti-tumor activity against 50 different human cancer cell lines and efficacy in 12
different mouse xenograft models. The efficacy in the mouse xenograft models was superior to that of gemcitabine. In addition,
in human cancer cell lines made resistant to the anti-tumor effects of gemcitabine, Fluorocyclopentenylcytosine still retains its full anti-tumor
activity.
In August 2012, Rexahn reported the completion of an exploratory Phase I clinical trial of Fluorocyclopentenylcytosine in cancer patients conducted
in Europe, to investigate the oral bioavailability, safety and tolerability of the compound. In this study, oral administration of Fluorocyclopentenylcytosine demonstrated an oral bioavailability of 34-58% and a plasma half-life (T1/2) of 14 hours. In addition, Fluorocyclopentenylcytosine was safe
and well tolerated in all subjects throughout the dose range tested. Fluorocyclopentenylcytosine is in phase I/II clinical trials by Rexahn for the treatment of bladder cancer and pancreatic cancer. This compound was granted Orphan Drug Designation by the U.S. Food and Drug Administration (FDA) for the treatment of patients with pancreatic cancer in September 2014.