U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)



Eliglustat, marketed by Genzyme as CERDELGA, is a glucosylceramide synthase inhibitor indicated for the long-term treatment of type 1 Gaucher disease who are CYP2D6 extensive metabolizers, intermediate metabolizers, or poor metabolizers (PMs) as detected by an FDA-cleared test.
Status:
Investigational
Source:
JAN:LUCERASTAT [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Lucerastat inhibits glycolipid biosynthesis. Lucerastat is an orally bioavailable inhibitor of glucosylceramide synthase. Lucerastat is being developed by the biopharmaceutical company Idorsia for the treatment of Fabry disease.
Trehalose, a naturally occurring disaccharide of glucose that appears to function in an anhydrobiotic capacity in many organisms. Bioblast Pharma study trehalose in Phase 2 for treating patients with Oculopharyngeal Muscular Dystrophy (OPMD) and spinocerebellar ataxia, type 3. In OPMD trehalose prevents the aggregation of the pathological protein (PABPN1) in muscle cells, the hallmark of the disease, by stabilizing the protein, reducing the formation of protein aggregations, and promoting their clearance from cells through autophagy, thus preventing muscle cell death. Trehalose induces autophagy via mTOR independent pathway. It activates TFEB, a master controller of lysosomal biogenesis and autophagy, by inhibiting AKT which is a negative regulator of TFEB that acts by direct phosphorylation (and inhibition) of TFEB. In addition, trehalose protects cells from hypoxic and anoxic injury and suppresses protein aggregation. In vivo studies with trehalose show cellular and behavioral beneficial effects in animal models of neurodegenerative diseases. Trehalose was in phase III clinical trial to study if it was possible to use the drug as add-on therapy in Bipolar Depression. Also in combination with hyaluronate, it can be used to treat dry eye syndrome. Trehalose protects the epithelial cells on the ocular surface, improving their resistance to the daily stresses of dry environments and tear film changes in a dry eye.