{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for grepafloxacin in Note (approximate match)
Showing 1 - 6 of 6 results
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Grepafloxacin, (S)- is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. Grepafloxacin has a chiral center and therefore has two optical enantiomeric isomers, R(+)- and S(-)-grepafloxacin. In neutrophil respiratory burst induced by N-formyl-methionyl leucyl-phenylalanine grepafloxacin induces a priming effect. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK).
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Grepafloxacin, (R)- is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. Grepafloxacin has a chiral center and therefore has two optical enantiomeric isomers, R(+)- and S(-)-grepafloxacin. In neutrophil respiratory burst induced by N-formyl-methionyl leucyl-phenylalanine grepafloxacin induces a priming effect. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK).
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Grepafloxacin, (S)- is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. Grepafloxacin has a chiral center and therefore has two optical enantiomeric isomers, R(+)- and S(-)-grepafloxacin. In neutrophil respiratory burst induced by N-formyl-methionyl leucyl-phenylalanine grepafloxacin induces a priming effect. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK).
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Grepafloxacin, (R)- is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. Grepafloxacin has a chiral center and therefore has two optical enantiomeric isomers, R(+)- and S(-)-grepafloxacin. In neutrophil respiratory burst induced by N-formyl-methionyl leucyl-phenylalanine grepafloxacin induces a priming effect. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK).
Status:
US Previously Marketed
Source:
RAXAR by OTSUKA
(1997)
Source URL:
First approved in 1997
Source:
RAXAR by OTSUKA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Grepafloxacin is a monofluorinated quinolone with a cyclopropyl group at position 1, a 3-methyl-1piperazinyl group at position 7 and a methyl substitution at the 5 position, that was synthesized by Otsuka in Japan. It exhibited in vitro activity against a wide variety of both Gram-positive and Gram-negative bacteria including anaerobic species. The compound was reported to have a broad spectrum of activity, particularly against pathogens responsible for community-acquired respiratory infections including those caused by beta-lactam and macrolide-resistant strains of Streptococcus pneumoniae and Haemophilus influenzae. Japanese researchers also reported that unlike other quinolones, grepafloxacin reached high levels in the bile and might also be useful in the treatment of biliary tract infection. Grepafloxacin was administered once daily and did not require dosage adjustment for renal insufficiency, but grepafloxacin tablets were contraindicated in patients with hepatic failure. Otsuka Pharmaceutical signed a licensing agreement for grepafloxacin with GlaxoSmithKline. According to this agreement, GlaxoSmithKline had marketing rights to grepafloxacin in Europe, USA, and certain other markets. Otsuka retained rights for Japan and some Asian countries
Status:
US Previously Marketed
Source:
RAXAR by OTSUKA
(1997)
Source URL:
First approved in 1997
Source:
RAXAR by OTSUKA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Grepafloxacin is a monofluorinated quinolone with a cyclopropyl group at position 1, a 3-methyl-1piperazinyl group at position 7 and a methyl substitution at the 5 position, that was synthesized by Otsuka in Japan. It exhibited in vitro activity against a wide variety of both Gram-positive and Gram-negative bacteria including anaerobic species. The compound was reported to have a broad spectrum of activity, particularly against pathogens responsible for community-acquired respiratory infections including those caused by beta-lactam and macrolide-resistant strains of Streptococcus pneumoniae and Haemophilus influenzae. Japanese researchers also reported that unlike other quinolones, grepafloxacin reached high levels in the bile and might also be useful in the treatment of biliary tract infection. Grepafloxacin was administered once daily and did not require dosage adjustment for renal insufficiency, but grepafloxacin tablets were contraindicated in patients with hepatic failure. Otsuka Pharmaceutical signed a licensing agreement for grepafloxacin with GlaxoSmithKline. According to this agreement, GlaxoSmithKline had marketing rights to grepafloxacin in Europe, USA, and certain other markets. Otsuka retained rights for Japan and some Asian countries