{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for enflurane in Code Comments (approximate match)
Showing 1 - 1 of 1 results
Status:
US Previously Marketed
Source:
ENFLURANE by ABBOTT
(1987)
Source URL:
First approved in 1972
Source:
ETHRANE by BAXTER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Enflurane (2-chloro-1,1,2,-trifluoroethyl-difluoromethyl ether) is a halogenated ether structural isomer of isoflurane. Developed by Ross Terrell in 1963, it was first used clinically in 1966. It was increasingly used for inhalational anesthesia during the 1970s and 1980s but is no longer in common use. Clinically, enflurane produces a dose-related depression of myocardial contractility with an associated decrease in myocardial oxygen consumption. Between 2% and 5% of the inhaled dose is oxidized in the liver, producing fluoride ions and difluoromethoxy-difluoroacetic acid. This is significantly higher than the metabolism of its structural isomer isoflurane. The exact mechanism of the action of general anesthetics has not been delineated. Enflurane acts as a positive allosteric modulator of the GABAA, glycine, and 5-HT3 receptors, and as a negative allosteric modulator of the AMPA, kainate, and NMDA receptors, as well as of nicotinic acetylcholine receptors.