{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for gentian root_codes_code in Code Literal (approximate match)
Showing 1 - 8 of 8 results
Status:
Investigational
Source:
NCT03672708: Not Applicable Interventional Completed Gastric Intestinal Metaplasia
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2012)
Source URL:
First approved in 2012
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 358F
(1967)
Source URL:
First approved in 1967
Source:
21 CFR 358F
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Class:
MIXTURE
Status:
Other
Class:
STRUCTURALLY DIVERSE
Status:
US Previously Marketed
Source:
GENAPAX by KEY PHARMS
(1977)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Gentian violet ((GV) hexamethyl pararosaniline, also known as crystal violet, methyl violet) is a triphenylmethane dye with anti-bacterial, anti-fungal, anti-helminithic, anti-trypanosomal, anti-angiogenic and anti-tumor properties. GV has a lengthy history and has been used successfully as monotherapy and an adjunct to treatment in a variety of diseases. Gentian violet interacts with negatively charged components of bacterial cells including the lipopolysaccharide (on the cell wall), the peptidoglycan and DNA. A similar cell penetration and DNA binding process is thought to take place for fungal cells as well. Because Gentian violet is a mutagen and mitotic poison, cell growth is consequently inhibited. A photodynamic action of gentian violet, apparently mediated by a free-radical mechanism, has recently been described in bacteria and in the protozoan T. cruzi. Evidence also suggests that gentian violet dissipates the bacterial (and mitochondrial) membrane potential by inducing permeability. This is followed by respiratory inhibition. This anti-mitochondrial activity might explain gentian violet's efficacy towards both bacteria and yeast with relatively mild effects on mammalian cells.