{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for moexiprilat in Display Name (approximate match)
Showing 1 - 3 of 3 results
Status:
US Approved Rx
(2010)
Source:
ANDA090416
(2010)
Source URL:
First approved in 1995
Source:
UNIVASC by UCB INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Moexipril is a non-sulfhydryl containing the precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. Moexipril hydrochloride is a prodrug for Moexiprilat, which inhibits ACE in humans and animals. The mechanism through which Moexiprilat lowers blood pressure is believed to be primarily inhibition of ACE activity. ACE is a peptidyl dipeptidase that catalyzes the conversion of the inactive decapeptide angiotensin I to the vasoconstrictor substance angiotensin II. Angiotensin II is a potent peripheral vasoconstrictor that also stimulates aldosterone secretion by the adrenal cortex and provides negative feedback on renin secretion. ACE is identical to kininase II, an enzyme that degrades bradykinin, an endothelium-dependent vasodilator. Moexiprilat is about 1000 times as potent as Moexipril in inhibiting ACE and kininase II. Inhibition of ACE results in decreased angiotensin II formation, leading to decreased vasoconstriction, increased plasma renin activity and decreased aldosterone secretion. The latter results in diuresis and natriuresis and a small increase in serum potassium concentration.
Status:
US Approved Rx
(2010)
Source:
ANDA090416
(2010)
Source URL:
First approved in 1995
Source:
UNIVASC by UCB INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Moexipril is a non-sulfhydryl containing the precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. Moexipril hydrochloride is a prodrug for Moexiprilat, which inhibits ACE in humans and animals. The mechanism through which Moexiprilat lowers blood pressure is believed to be primarily inhibition of ACE activity. ACE is a peptidyl dipeptidase that catalyzes the conversion of the inactive decapeptide angiotensin I to the vasoconstrictor substance angiotensin II. Angiotensin II is a potent peripheral vasoconstrictor that also stimulates aldosterone secretion by the adrenal cortex and provides negative feedback on renin secretion. ACE is identical to kininase II, an enzyme that degrades bradykinin, an endothelium-dependent vasodilator. Moexiprilat is about 1000 times as potent as Moexipril in inhibiting ACE and kininase II. Inhibition of ACE results in decreased angiotensin II formation, leading to decreased vasoconstriction, increased plasma renin activity and decreased aldosterone secretion. The latter results in diuresis and natriuresis and a small increase in serum potassium concentration.