{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for beta root_Display\ Name in Display Name (approximate match)
Status:
Investigational
Source:
NCT03298373: Phase 1 Interventional Unknown status Healthy Men
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT00357357: Phase 2 Interventional Completed Alzheimer's Disease
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT02648178: Not Applicable Interventional Completed Nicotine Dependence, Other Tobacco Product
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT03966833: Not Applicable Interventional Completed Mental Depression
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Isopropyl β-D-1-thiogalactopyranoside (IPTG) is a molecular biology reagent that induces β-galactosidase activity in many bacteria. This compound is a molecular mimic of allolactose, a lactose metabolite that triggers transcription of the lac operon, and it is therefore used to induce protein expression where the gene is under the control of the lac operator. Like allolactose, IPTG binds to the lac repressor and releases the tetrameric repressor from the lac operator in an allosteric manner, thereby allowing the transcription of genes in the lac operon, such as the gene coding for beta-galactosidase, a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides. But unlike allolactose, the sulfur atom creates a chemical bond which is non-hydrolyzable by the cell, preventing the cell from metabolizing or degrading the inducer.
Status:
Investigational
Source:
NCT02653729: Phase 2 Interventional Completed Psychosis
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
JAN:SODIUM ACENEURAMATE [JAN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Sodium aceneuramate is a sodium salt of aceneuramic acid (sialic acid). It is an effective inhalant expectorant. Inhalation of sodium aceneuramate repaired inflammation in the airway, and caused bronchitic rabbits to produce sputa with a low viscosity, similar to normal air-way secretions. Sodium aceneuramate protected the mucociliary transport impaired bycigarette smoke in a dose-dependent manner. The results suggest that sodium aceneuramate may participate in the defense mechanism in the airway against irritant gases. Sodium aceneuramate inhibited bronchial anaphylaxis and the release of histamine into bronchoalveolar lavages. Sodium aceneuramate has an action which elevates the viscoelasticity of secretions in the respiratory tract.
Status:
Investigational
Source:
NCT00588185: Not Applicable Interventional Recruiting Prostate Cancer
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT04462666: Phase 2 Interventional Unknown status Gouty Arthritis
(2020)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Investigational
Source:
NCT02629757: Phase 3 Interventional Unknown status Anaplastic Oligoastrocytoma
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
Nucleic Acid Ther. Feb 2019;29(1):16-32.: Phase 1 Human clinical trial Completed N/A
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
β-N-Acetyl-D-galactosamine (GalNAc) is an amino sugar derived from galactose found in O-linked and N-linked glycans. As an essential sugar, the role is basically the same for N-acetylgalactosamine as it is for the others, which is to enhance cellular communication. Although there has not been much research to date, what has been done reveals that this saccharide may inhibit the growth of some tumors. For example, colon cancer patients have only half the normal amounts of N-acetylgalactosamine. Studies have shown that colon cancer cells that metastasize make more mucin, making them more likely to form metastases. Therefore, it appears that N-acetylgalactosamine plays an important role in preventing this formation from occurring.
N-acetylgalactosamine and N-acetylglucosamine glycans is a predictor of metastasis and poor prognosis in a number of human adenocarcinomas, including breast cancer. Lower than normal levels of this sugar has been found in patients with heart disease implying that these conditions may be reversed if a supplementation of N-acetylgalactosamine were to be added to the diet. It appears that β-N-Acetyl-D-galactosamine plays a role in joint function, sweeping away destructive free radicals that can cause inflammation. N-acetylgalactosamine also seems to play an important role in the immune system. Contained in macrophages and neutrophils, it may play a significant role in the etiology of joint inflammation and could be important in such conditions as rheumatoid arthritis. In humans, it is the terminal carbohydrate forming the antigen of blood group A. N-acetylgalactosamine (GalNAc) is a well-defined liver-targeted moiety benefiting from its high affinity with asialoglycoprotein receptor (ASGPR). By conjugating it directly to the oligonucleotides or decorating it to a certain delivery system as a targeting moiety, GalNAc has achieved compelling successes in the development of nucleic acid therapeutics in recent years. Several oligonucleotide modalities are undergoing pivotal clinical studies, followed by a blooming pipeline in the preclinical stage. N-Acetyl-D-galactosamine is used in affinity chromatography, protein chromatography and in carbohydrate matrices. N-Acetyl-D-galactosamine has been used to study periodontal disease and to facilitate the design of potent small-molecule ice recrystallization inhibitors. N-Acetyl-D-galactosamine has also been used to demonstrate a molecular shuttle between extracellular and cytoplasmic space allows for monitoring of GAG biosynthesis.