{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
posaconazole
to a specific field?
There is one exact (name or code) match for posaconazole
Status:
US Approved Rx
(2020)
Source:
ANDA208773
(2020)
Source URL:
First approved in 2006
Source:
NDA022003
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Posaconazole is a triazole antifungal drug that is used to treat invasive infections by Candida species and Aspergillus species in severely immunocompromised patients. It marketed in the United States, the European Union, and in other countries by Schering-Plough under the trade name Noxafil. Noxafil is used for prophylaxis of invasive Aspergillus and Candida infections in patients, 13 years of age and older, who are at high risk of developing these infections due to being severely immunocompromised as a result of procedures such as hematopoietic stem cell transplant (HSCT) recipients with graft-versus-host disease (GVHD), or due to hematologic malignancies with prolonged neutropenia from chemotherapy. Also for the treatment of oropharyngeal candidiasis, including oropharyngeal candidiasis refractory to itraconazole and/or fluconazole. Posaconazole blocks the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450 dependent enzyme lanosterol 14α-demethylase responsible for the conversion of lanosterol to ergosterol in the fungal cell membrane. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane thus weakening the structure and function of the fungal cell membrane. This may be responsible for the antifungal activity of posaconazole. It is absorbed within three to five hours and predominately eliminated through the liver, and has a half-life of about 35 hours. Oral administration of posaconazole taken with a high-fat meal exceeds 90% bioavailability and increases the concentration by four times compared to fasting state.
Status:
US Approved Rx
(2020)
Source:
ANDA208773
(2020)
Source URL:
First approved in 2006
Source:
NDA022003
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Posaconazole is a triazole antifungal drug that is used to treat invasive infections by Candida species and Aspergillus species in severely immunocompromised patients. It marketed in the United States, the European Union, and in other countries by Schering-Plough under the trade name Noxafil. Noxafil is used for prophylaxis of invasive Aspergillus and Candida infections in patients, 13 years of age and older, who are at high risk of developing these infections due to being severely immunocompromised as a result of procedures such as hematopoietic stem cell transplant (HSCT) recipients with graft-versus-host disease (GVHD), or due to hematologic malignancies with prolonged neutropenia from chemotherapy. Also for the treatment of oropharyngeal candidiasis, including oropharyngeal candidiasis refractory to itraconazole and/or fluconazole. Posaconazole blocks the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450 dependent enzyme lanosterol 14α-demethylase responsible for the conversion of lanosterol to ergosterol in the fungal cell membrane. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane thus weakening the structure and function of the fungal cell membrane. This may be responsible for the antifungal activity of posaconazole. It is absorbed within three to five hours and predominately eliminated through the liver, and has a half-life of about 35 hours. Oral administration of posaconazole taken with a high-fat meal exceeds 90% bioavailability and increases the concentration by four times compared to fasting state.
Status:
US Approved Rx
(2003)
Source:
NDA021385
(2003)
Source URL:
First approved in 2003
Source:
NDA021385
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Sertaconazole is a azole antifungal that is FDA approved for the treatment of interdigital tinea pedis in immunocompetent patients 12 years of age and older, caused by: Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum. Sertaconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme necessary to convert lanosterol to ergosterol. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Common adverse reactions include contact dermatitis, dry skin, burning skin and application site skin tenderness.
Status:
US Approved Rx
(2016)
Source:
ANDA206747
(2016)
Source URL:
First approved in 2002
Source:
NDA021267
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Voriconazole (vor-i-KON-a-zole, brand name Vfend, Pfizer) is a triazole antifungal medication. VFEND® (voriconazole) is available as film-coated tablets for oral administration, and as a lyophilized powder for solution for intravenous infusion. Voriconazole is a triazole antifungal agent indicated for use in the treatment of fungal infections including invasive aspergillosis, esophageal candidiasis, and serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani. Fungal plasma membranes are similar to mammalian plasma membranes, differing in having the nonpolar sterol ergosterol, rather than cholesterol, as the principal sterol. Membrane sterols such as ergosterol provide structure, modulation of membrane fluidity, and possibly control of some physiologic events. Voriconazole effects the formation of the fungal plasma membrane by indirectly inhibiting the biosynthesis of ergosterol. This results in plasma membrane permeability changes and inhibition of growth. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole. Voriconazole has been shown to be more selective for fungal cytochrome P-450 enzymes than for various mammalian cytochrome P-450 enzyme systems. The most common side effects associated with voriconazole include transient visual disturbances, fever, rash, vomiting, nausea, diarrhea, headache, sepsis, peripheral edema, abdominal pain, and respiratory disorder. Unlike most adverse effects, which are similar to other azole antifungal agents, visual disturbances (such as blurred vision or increased sensitivity to light) are unique to voriconazole. Though rare, there have been cases of serious hepatic reactions during treatment with voriconazole (a class effect of azole antifungal agents). Liver function tests should be evaluated at the start of and during the course of therapy. Voriconazole is phototoxic. It has been associated with an increased risk of squamous-cell carcinoma of the skin
Status:
US Approved Rx
(2015)
Source:
ANDA205573
(2015)
Source URL:
First approved in 1992
Source:
NDA020083
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
SPORANOX is the brand name for itraconazole, an azole antifungal agent. Itraconazole is a 1:1:1:1 racemic mixture of four diastereomers (two enantiomeric pairs), each possessing three chiral centers. In vitro studies have demonstrated that itraconazole inhibits the cytochrome P450-dependent synthesis of ergosterol, which is a vital component of fungal cell membranes. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Itraconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis. SPORANOX capsules are indicated for the treatment of the following fungal infections in immunocompromised and non-immunocompromised patients: Blastomycosis, pulmonary and extrapulmonary; Histoplasmosis, including chronic cavitary pulmonary disease and disseminated, nonmeningeal histoplasmosis, and Aspergillosis, pulmonary and extrapulmonary, in patients who are intolerant of or who are refractory to amphotericin B therapy. SPORANOX is also indicated for the treatment of the following fungal infections in non-immunocompromised patients: Onychomycosis of the toenail, with or without fingernail involvement, due to dermatophytes (tinea unguium), and Onychomycosis of the fingernail due to dermatophytes (tinea unguium). Itraconazole is mainly metabolized through CYP3A4. Other drugs that either share this metabolic pathway or modify CYP3A4 activity may influence the pharmacokinetics of itraconazole. Similarly, itraconazole may modify the pharmacokinetics of other drugs that share this metabolic pathway. Itraconazole is a potent CYP3A4 inhibitor and a P-glycoprotein inhibitor. When using concomitant medication, it is recommended that the corresponding label be consulted for information on the route of metabolism and the possible need to adjust dosages.
Status:
US Approved Rx
(2012)
Source:
ANDA078698
(2012)
Source URL:
First approved in 1990
Source:
DIFLUCAN IN SODIUM CHLORIDE 0.9% by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fluconazole, a synthetic antifungal agent of the imidazole class, is used to treat vaginal candidiasis. It inhibits the fungal lanosterol 14 alpha-demethylase which thereby prevents the formation of ergosterol which is an essential component in the fungal cell membrane. Indicated for the treatment of fungal infections.
Status:
US Approved Rx
(2016)
Source:
ANDA205076
(2016)
Source URL:
First approved in 1988
Source:
NDA019828
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Oxiconazole nitrate is 2',4'-dichloro-2-imidazol-1-ylacetophenone (Z)-[0-(2,4-dichlorobenzyl)oxime], mononitrate is an imidazole derivative characterized by a broad fungistatic spectrum. In vitro oxiconazole is highly effective against many dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, and Epidermophyton floccosum. In addition, fungicidal activity of various degree was found in selected species (Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans and Trichophyton mentagrophytes). Synthesis of DNA was inhibited by subinhibitory concentrations of oxiconazole in parallel to cell multiplication, whereas synthesis of RNA, protein and carbohydrate was decreased to a lesser extent. OXISTAT® (Oxiconazole nitrate) Cream and Lotion are indicated for the topical treatment of the following dermal infections: tinea pedis, tinea cruris, and tinea corporis due to Trichophyton rubrum, Trichophyton mentagrophytes, or Epidermophyton floccosum. OXISTAT® Cream is indicated for the topical treatment of tinea (pityriasis) versicolor due to Malassezia furfur. Oxiconazole cream exerts no detectable systemic effect since only a negligible amount is absorbed from the skin. Once-daily use of oxiconazole cream could be valuable in patients with a history of noncompliance with multiple-daily regimens of other topical antifungal agents.
Status:
US Approved Rx
(2004)
Source:
NDA021735
(2004)
Source URL:
First approved in 1987
Source:
TERAZOL 7 by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Terconazole is an antifungal drug used to treat vaginal yeast infection. Terconazole may exert its antifungal activity by disrupting normal fungal cell membrane permeability. Terconazole and other triazole antifungal agents inhibit cytochrome P450 "14-alpha-demethylase" in susceptible fungi, which leads to the accumulation of lanosterol and other methylated sterols and a decrease in ergosterol concentration. Depletion of ergosterol in the membrane disrupts the structure and function of the fungal cell leading to a decrease or inhibition of fungal growth. During controlled clinical studies conducted in the United States, 521 patients with vulvovaginal candidiasis were treated with terconazole 0.4% vaginal cream. Based on comparative analyses with placebo, the adverse experiences considered most likely related to terconazole 0.4% vaginal cream were a headache and body pain. Fever and chills, vulvovaginal burning, itching, and irritation have also been reported. The adverse drug experience on terconazole most frequently causing discontinuation was vulvovaginal itching.
Status:
US Approved Rx
(1985)
Source:
NDA018738
(1985)
Source URL:
First approved in 1985
Source:
NDA018738
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Sulconazole (trade name Exelderm) is an antifungal medication of the imidazole class. Sulconazole has a broad spectrum of antifungal activity in vitro and has been shown to be an effective topical antifungal agent for the management of superficial fungal infections of the skin, particularly dermatophytosis and tinea versicolor. Sulconazole inhibits the cytochrome P-450 isoenzyme, C-14-alpha-demethylase by binding to the heme iron of the enzyme. This results in a largely fungistatic effect. The selectivity of azole antifungal agents for pathogenic organisms compared with mammalian cells appears to depend on a preferred affinity of these drugs for fungal versus mammalian cytochrome P-450 sterol demethylases. Enzyme inhibition by sulconazole prevents the synthesis of ergosterol, a sterol found in fungal cell membranes but, in general, not in mammalian cell membranes. Additionally, lanosterol accumulates, which changes membrane permeability, cell volume, secondary metabolic effects, and causes defective cell division and growth inhibition. As sulconazole is primarily fungistatic, an intact immune system may be needed for infection resolution.In selected situations, sulconazole may have growth phase-dependent fungicidal activity against very susceptible organisms. The 1% concentration of sulconazole may greatly exceed the minimum inhibitory concentration and exert a direct physiochemical effect on the fungal cell membrane. The fungicidal effect may be due to hydrophobic interactions between sulconazole and unsaturated fatty acids in the membrane. Mammalian cells generally have little or no unsaturated fatty acids. Sulconazole may also prevent DNA and RNA synthesis and increase their degradation.Sulconazole has activity against many dermatophytes and yeast. One measure of the drug's antifungal activity is the relative inhibition factor (RIF). The RIF approaches 0% for a drug to which a fungus is highly sensitive and 100% for a drug that is non-inhibitory. The RIF values of sulconazole for Candida species, Aspergillus species, and dermatophytes are broadly similar to those of clotrimazole, econazole, ketoconazole, miconazole, and tioconazole. The mean RIF values were 69% (30—98%) for Candida species, 71% (61—82%) for Aspergillus species, and 12% (5—18%) for dermatophytes. Sulconazole is available as a cream or solution to treat skin infections such as athlete's foot, ringworm, jock itch, and sun fungus.
Status:
US Approved Rx
(2012)
Source:
ANDA200923
(2012)
Source URL:
First approved in 1985
Source:
FEMSTAT by ROCHE PALO
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Butoconazole, trade names Gynazole-1, an imidazole antifungal used in gynecology for the local treatment of vulvovaginal candidiasis (infections caused by Candida). The exact mechanism of the antifungal action of butoconazole nitrate is unknown; however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell.
Status:
US Approved Rx
(1997)
Source:
NDA020676
(1997)
Source URL:
First approved in 1983
Source:
TZ-3 by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Tioconazole is an antifungal medication of the imidazole class used to treat infections caused by a fungus or yeast. Tioconazole is a broad-spectrum imidazole antifungal agent that inhibits the growth of human pathogenic yeasts. Tioconazole exhibits fungicidal activity in vitro against Candida albicans, other species of the genus Candida, and against Torulopsis glabrata. Tioconazole prevents the growth and function of some fungal organisms by interfering with the production of substances needed to preserve the cell membrane. This drug is effective only for infections caused by fungal organisms. Tioconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. Tioconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms and the uptake of purine, impair triglyceride and/or phospholipid biosynthesis, and inhibit the movement of calcium and potassium ions across the cell membrane by blocking the ion transport pathway known as the Gardos channel. Side effects (for the women's formulas) may include temporary burning/irritation of the vaginal area, moderate drowsiness, headache similar to a sinus headache, hives, and upper respiratory infection.