U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for moxidectin

 
Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.

Showing 1 - 10 of 23 results

Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.
Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.
Praziquantel, marketed as Biltricide, is an anthelmintic used in humans and animals for the treatment of tapeworms and flukes. Specifically, it is effective against schistosoma, Clonorchis sinensis the fish tape worm Diphyllobothrium latum. Praziquantel works by causing severe spasms and paralysis of the worms' muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. The antibiotic rifampicin decreases plasma concentrations of praziquantel. Carbamazepine and phenytoin are reported to reduce the bioavailability of praziquantel. Chloroquine reduces the bioavailability of praziquantel. The drug cimetidine heightens praziquantel bioavailability.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)