{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "VATC|ANTIBACTERIALS FOR INTRAMAMMARY USE|AMPHENICOLS FOR INTRAMAMMARY USE|Amphenicols" in comments (approximate match)
Showing 1 - 3 of 3 results
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
Possibly Marketed Outside US
First approved in 1996
Source:
NADA141063
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Florfenicol (Nuflor) is a fluorinated synthetic analog of thiamphenicol. Florfenicol is indicated for the treatment of bovine respiratory disease (BRD) associated with Mannheimia (Pasteurella) haemolytica, Pasteurella multocida, and Haemophilus somnus, for treatment of bovine interdigital phlegmon (foot rot, acute interdigital necrobacillosis, infectious pododermatitis) associated with Fusobacterium necrophorum and Bacteroides melaninogenicus. Florfenicol is a broad-spectrum, primarily bacteriostatic, antibiotic with a range of activity similar to that of chloramphenicol, including many gram-negative and gram-positive organisms; however, florfenicol does not carry the risk of inducing human aplastic anemia that is associated with chloramphenicol. It also has activity against some chloramphenicol resistant strains of bacteria, possibly because it is less affected by the major enzyme produced in plasmid-mediated bacterial resistance against chloramphenicol and thiamphenicol. Although the activity of florfenicol against obligate anaerobes is not addressed in the literature, it is likely to be quite effective. Antibiotic principle of Florfenicol is similar to that of chloramphenicol and Thiamphenicol. Florfenicol inhibits protein synthesis by binding to 70S ribosomal 50S subunits of susceptible bacteria, leading to the inhibition of peptidyl transferase and thereby preventing the transfer of amino acids to extending peptide chains and subsequent protein formation. The bacterial receptor that is the site of action for florfenicol is also considered to be the same as that for chloramphenicol and thiamphenicol. Florfenicol has a fluorine atom instead of the hydroxyl group located at C-3 in the structure of chloramphenicol and thiamphenicol. This prevents the acetylation of bacterial acetyltransferase in this site as to allow florfenicol to be less susceptible to deactivation by bacteria with plasmid-transmissible resistance that involves acetylation of the C-3 hydroxyl group in chloramphenicol and thiamphenicol, and prevents their interaction with bacterial ribosomes.
Status:
Possibly Marketed Outside US
Source:
GLITISOL by Sterling Winthrop
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Thiamphenicol is a broad-spectrum antibiotic, which is active against gram-positive and gram-negative organisms. The drug is marketed in Asia and Latin America for the treatment of various infections, including sexually transmitted diseases. As many phenicols, thiamphenicol inhibits the protein synthesis in bacterias by binding to 23S ribosomal subunit. In Europe and USA the drug is used in a veterinary practice.