U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ACHIRAL)


Taurolidine [bis(1,1-dioxoperhydro-1,2,4-thiadiazinyl-4)-methane (TRD)], a product derived from the aminosulfoacid taurin, was first described as an anti-bacterial substance. Taurolidine is a small dimeric molecule with molecular weight 284. It comprises the semiconditional amino acid taurine. Taurolidine was originally designed as a broad-spectrum antibiotic. Taurolidine has a broad antimicrobial spectrum of activity that is effective against aerobes and anaerobes, Gram-negative and Gram-posi-tive bacteria as well as yeasts and moulds in vitro. Taurolidine is also effective against methicillin-resistant and vancomycin-resistant bacteria (MRSA, VISA and VRE). It was mainly used in the treatment of patients with peritonis as well as antiendoxic agent in patients with systematic inflammatory response syndrome. It has been shown to be an effective bactericidal agent against both aerobic and anaerobic bacteria. It is currently licensed for intraperitoneal use in several European countries for the treatment of peritonitis. The compound appears to be nontoxic and has an excellent safety record since its initial introduction over 30 years ago. Taurolidine also possesses antiadherence properties and has been shown in vivo to reduce the extent and severity of postoperative peritoneal adhesions. It also possesses a strong anti-inflammatory action. This action appears, at least in part, to arise through its ability to inactivate endotoxin. Inflammation-induced tumor development is well described in the literature. Taurolidine’s anti-inflammatory and antiadherence properties prompted an investigation to examine whether it has a role in antitumor therapy. Taurolidine induces cancer cell death through a variety of mechanisms. It appears to act through enhancing apoptosis, inhibiting angiogenesis and tumor adherence, downregulating proinflammatory cytokine and endotoxin levels, and stimulating the immune system in response to surgically induced trauma. Taurolidine is currently in preclinical development for neuroblastoma. In February 23, 2018 the U.S. Food and Drug Administration (FDA) granted orphan drug designation to taurolidine for the treatment of neuroblastoma. Taurolidine is a key component in the Neutrolin®, a novel anti-infective solution for the reduction and prevention of catheter-related infections and thrombosis in patients requiring central venous cathers in end stage renal disease. Neutrolin contains a mix of Taurolidine, Citrate and Heparin. Neutrolin is designed to: 1) Aid in the prevention of Catheter-Related Bloodstream Infections (CRBIs) and 2) Prevent catheter dysfunction (due to blood clotting).

Class (Stereo):
CHEMICAL (ABSOLUTE)

BioLineRx Ltd has developed BL-8040, a short peptide for the treatment of solid tumors, acute myeloid leukemia, or AML, and stem-cell mobilization for bone-marrow transplantation. BL-8040 acts as CXCR4 antagonist. CXCR4 is a chemokine receptor that is directly involved in tumor progression, angiogenesis, metastasis, and cell survival. In February 2019 US Food and Drug Administration (FDA) has granted Orphan Drug Designation to BL-8040, for the treatment of pancreatic cancer. Previously FDA had granted Orphan Drug Designation for the treatment of acute myeloid leukemia and stem-cell mobilization.
Ibrutinib is an orally bioavailable Bruton's tyrosine kinase (BTK) inhibitor indicated for the treatment of mantle cell lymphoma (MCL) patients that previously received at least one therapy. The drug was jointly developed by Janssen Biotech and Pharmacyclics. Ibrutinib selectively binds to Cys-481 residue in the allosteric inhibitory segment of BTK (TK/SH1 domain), and irreversibly blocks its enzymatic activity thus preventing B-cell activation and signaling, totally blocking the B-cell receptor and cytokine receptor pathways. This leads to an inhibition of the growth of malignant B cells that overexpress BTK. Apart from mantle cell lymphoma Ibrutinib is approved for the treatment of chronic lymphocytic leukemia and Waldenstrom Macroglobulinemia.
Ruxolitinib (trade names Jakafi and Jakavi, by Incyte Pharmaceuticals and Novartis) is a drug for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative disorder that affects the bone marrow. It is also being investigated for the treatment of other types of cancer (such as lymphomas and pancreatic cancer), for polycythemia vera, for plaque psoriasis, and for alopecia areata. Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. Ruxolitinib is a Janus-associated kinase (JAK) inhibitor with potential antineoplastic and immunomodulating activities. Ruxolitinib specifically binds to and inhibits protein tyrosine kinases JAK 1 and 2, which may lead to a reduction in inflammation and an inhibition of cellular proliferation. The JAK-STAT (signal transducer and activator of transcription) pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. In a mouse model of JAK2V617F-positive MPN, ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (eg, TNF-α, IL-6). Ruxolitinib was initially synthesized at Incyte Corporation that acquired the rights to develop and commercialize the drug in US. Incyte amended its Collaboration and License Agreement with Novartis, granting Novartis exclusive research, development and commercialization rights for ruxolitinib outside the U.S.
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Etodolac is an anti-inflammatory agent with analgesic and antipyretic properties. It is used to treat osteoarthritis, rheumatoid arthritis and control acute pain. The therapeutic effects of etodolac are achieved via inhibition of the synthesis of prostaglandins involved in fever, pain, swelling and inflammation. Etodolac is administered as a racemate. As with other NSAIDs, the S-form has been shown to be active while the R-form is inactive. Both enantiomers are stable and there is no evidence of R- to S- conversion in vivo. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. Etodolac is used for acute and long-term management of signs and symptoms of osteoarthritis and rheumatoid arthritis, as well as for the management of pain. Lodine, the brand-name formulation of the drug, has been discontinued in the United States, and only the generic form of etodolac is available.
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (RACEMIC)



Eflornithine is a prescription drug indicated in the treatment of facial hirsutism (excessive hair growth). Eflornithine hydrochloride cream for topical application is intended for use in women suffering from facial hirsutism and is sold by Allergan, Inc. under the brand name Vaniqa. Besides being a non-mechanical and non-cosmetic treatment, eflornithine is the only non-hormonal and non-systemic prescription option available for women who suffer from facial hirsutism. Eflornithine for injection against sleeping sickness was manufactured by Sanofi Aventis and sold under the brand name Ornidyl in the USA. It is now discontinued. Eflornithine is on the World Health Organization's List of Essential Medicines. Eflornithine prevents hair growth by inhibiting the anagen phase of hair production. This occurs by eflornithine irreversibly binding (also called suicide inhibition) to ornithine decarboxylase (ODC) and physically preventing the natural substrate ornithine from accessing the active site.
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
First approved in 1967
Source:
PROPRANOLOL HYDROCHLORIDE by BAXTER HLTHCARE CORP
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.