{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ORPHAN DRUG|Designated|Treatment of chronic myelogenous leukemia" in comments (approximate match)
Showing 1 - 6 of 6 results
Status:
US Approved Rx
(2007)
Source:
NDA022068
(2007)
Source URL:
First approved in 2007
Source:
NDA022068
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nilotinib (AMN107, trade name Tasigna) is a kinase inhibitor indicated for the treatment of chronic phase and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia (CML) in adult patients resistant to or intolerant to prior therapy that included imatinib. Nilotinib is an inhibitor of the Bcr-Abl kinase. Nilotinib binds to and stabilizes the inactive conformation of the kinase domain of Abl protein. In vitro, nilotinib inhibited Bcr-Abl mediated proliferation of murine leukemic cell lines and human cell lines derived from Ph+ CML patients. Under the conditions of the assays, nilotinib was able to overcome imatinib resistance resulting from Bcr-Abl kinase mutations, in 32 out of 33 mutations tested. In vivo, nilotinib reduced the tumor size in a murine Bcr-Abl xenograft model. Nilotinib inhibited the autophosphorylation of the following kinases at IC50 values as indicated: Bcr-Abl (20-60 nM), PDGFR (69 nM) and c-Kit (210 nM). Nilotinib is currently being trialed in people with Parkinson's disease, as it appears to be able to halt progression of the disease and even improve their symptoms. The drug also has a number of adverse effects typical of anti-cancer drugs: a headache, fatigue, gastrointestinal problems such as nausea, vomiting, diarrhea and constipation, muscle and joint pain, rash and other skin conditions, flu-like symptoms, and reduced blood cell count. Less typical side effects are those of the cardiovascular system, such as hypertension (high blood pressure), various types of arrhythmia, and prolonged QT interval. Interaction of nilotinib with OATP1B1 and OATP1B3 may alter its hepatic disposition and can lead to transporter mediated drug-drug interactions. Nilotinib is an inhibitor of OATP-1B1 transporter but not for OATP-1B3. Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contributes significantly to the pharmacological activity of nilotinib.
Status:
Investigational
Source:
NCT00546780: Phase 3 Interventional Completed Multiple Myeloma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Tanespimycin (17-allylamino-17-demethoxygeldanamycin,
17-AAG) is a synthetic analogue of geldanamycin, an antibiotic
first purified in 1970 from Streptomyces hygroscopicus. Tanespimycin is an Hsp90 inhibitor that has demonstrated the potential to disrupt the activity of multiple oncogenes and cell signaling pathways implicated in tumor growth, including HER2, a key pathway in breast cancer. Tanespimycin was being under development by Kosan Biosciences. It was in phase 3 clinical development with bortezomib for the treatment of multiple myeloma (MM). However, in 2010 the company halted development of tanespimycin, during late-stage clinical trials as a potential treatment for multiple myeloma. While no definitive explanation was given, it has been suggested that Bristol-Myers Squibb halted development over concerns of the financial feasibility of tanespimycin development given the 2014 expiry of the patent on this compound, and the relative expense of manufacture.
Status:
Designated
Source:
FDA ORPHAN DRUG:336811
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
NRC-AN-019 has been found to be a promising new lead compound for the therapy of imatinib mesylate-resistant chronic myeloid leukemia. NRC-AN-019 showed considerable safety and response. In addition, it has the therapeutic potential in the treatment of Her-2-positive breast cancer.
Status:
US Approved Rx
(2002)
Source:
BLA103964
(2002)
Source URL:
First approved in 2002
Source:
BLA103964
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT00004918: Phase 1/Phase 2 Interventional Completed Accelerated Phase Chronic Myelogenous Leukemia
(1999)
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2025)
Source:
ANDA213383
(2025)
Source URL:
First approved in 2006
Source:
NDA021986
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.