U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 11 results

Bazedoxifene acetate (WAY-140424; TSE-424) is an oral, nonsteroidal, indole-based selective estrogen-receptor modulator developed by Ligand Pharmaceuticals in collaboration with Wyeth Pharmaceuticals (NJ, USA) (now Pfizer) . It was developed using raloxifene as a template with the benzothiophene core substituted by an indole ring in order to obtain favorable effects on the skeleton and lipid metabolism with the additional improvement of a neutral effect on hot flushes and without stimulating the uterus or the breast. The drug is approved as a monotherapy for the prevention and treatment of osteoporosis and in combination with conjugated estrogens for the treatment of menopausal symptoms and prevention of osteoporosis. Bazedoxifene binds to both ERalpha and ERbeta with high affinity. Bazedoxifene acts as both a receptor agonist and/or antagonist, depending upon the cell and tissue type and target genes. Bazedoxifene decreases bone resorption and reduces biochemical markers of bone turnover to the premenopausal range. These effects on bone remodeling lead to an increase in bone mineral density (BMD), which in turn contributes to a reduction in the risk of fractures. Bazedoxifene functions primarily as an estrogen-receptor antagonist in uterine and breast tissues.
Status:
First approved in 2003

Class (Stereo):
CHEMICAL (ACHIRAL)



Ibandronic acid (INN) or ibandronate sodium (USAN) is a potent bisphosphonate drug developed by Hoffman La Roche and used in the prevention and treatment of osteoporosis and metastasis-associated skeletal fractures in people with cancer. Ibandronate is indicated for the treatment and prevention of osteoporosis in post-menopausal women. In May 2003, the U.S. Food and Drug Administration (FDA) approved Ibandronate as a daily treatment for post-menopausal osteoporosis. The basis for this approval was a three-year, randomized, double-blind, placebo-controlled trial women with post-menopausal osteoporosis. Every participant also received daily oral doses of calcium and 400IUs [international units] of vitamin D. At the study's conclusion, both doses significantly reduced the occurrence risk of new vertebral fractures by 50–52 percent when compared to the effects of the placebo drug. Ibandronate is efficacious for the prevention of metastasis-related bone fractures in multiple myeloma, breast cancer, and certain other cancers. In 2008, the U.S Food and Drug Administration (FDA) issued a communication warning of the possibility of severe and sometimes incapacitating bone, joint and/or muscle pain.[4] A study conducted by the American Society of Bone and Mineral Research concluded that long-term use of bisphosphonates, including Boniva, may increase the risk of a rare but serious fracture of the femur. Ibandronic acid is marketed under the trade names Boniva in the USA, Bondronat in Europe, Bonviva in Asia, Ibandrix in Ecuador and Bondrova in Bangladesh.
Risedronic acid is a pyridinyl bisphosphonate that inhibits osteoclast-mediated bone resorption and modulates bone metabolism. The action of risedronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Risedronate also targets farnesyl pyrophosphate (FPP) synthase. It is FDA approved for the treatment of postmenopausal osteoporosis, osteoporosis in men, glucocorticoid-induced osteoporosis and Paget’s disease. Calcium, antacids, or oral medications containing divalent cations interfere with the absorption of Risedronic acid. Common adverse reactions include rash, abdominal pain, constipation, diarrhea, indigestion, nausea, backache, urinary tract infectious disease and influenza-like illness.
Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Alendronic acid is a bisphosphonate drug used for osteoporosis, osteogenesis imperfecta, and several other bone diseases. It is marketed alone as well as in combination with vitamin D. Alendronate inhibits osteoclast-mediated bone-resorption. Like all bisphosphonates, it is chemically related to inorganic pyrophosphate, the endogenous regulator of bone turnover. But while pyrophosphate inhibits both osteoclastic bone resorption and the mineralization of the bone newly formed by osteoblasts, alendronate specifically inhibits bone resorption without any effect on mineralization at pharmacologically achievable doses. Its inhibition of bone-resorption is dose-dependent and approximately 1,000 times stronger than the equimolar effect of the first bisphosphonate drug, etidronate. Under therapy, normal bone tissue develops, and alendronate is deposited in the bone-matrix in a pharmacologically inactive form. For optimal action, enough calcium and vitamin D are needed in the body in order to promote normal bone development. Hypocalcemia should, therefore, be corrected before starting therapy. Treatment of post-menopausal women and people with osteogenesis imperfecta over the age of 22 with alendronic acid has demonstrated normalization of the rate of bone turnover, significant increase in BMD (bone mineral density) of the spine, hip, wrist and total body, and significant reductions in the risk of vertebral (spine) fractures, wrist fractures, hip fractures, and all non-vertebral fractures. In the Fracture Intervention Trial, the women with the highest risk of fracture (by virtue of pre-existing vertebral fractures) were treated with Fosamax 5 mg/day for two years followed by 10 mg/day for the third year. This resulted in approximately 50% reductions in fractures of the spine, hip, and wrist compared with the control group taking placebos. Both groups also took calcium and vitamin D.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Tiludronic acid is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates. Tiludronate is a first generation (non-nitrogenous) bisphosphonate in the same family as etidronate and clodronate. Tiludronate affects calcium metabolism and inhibits bone resorption and soft tissue calcification. Of the tiludronate that is resorbed (from oral preparation) or infused (for intravenous drugs), about 50% is excreted unchanged by the kidney. The remainder has a very high affinity for bone tissue, and is rapidly absorbed onto the bone surface. Tiludronic acid is marketed under the tradename Skelid. In vitro studies indicate that tiludronate disodium acts primarily on bone through a mechanism that involves inhibition of osteoclastic activity with a probable reduction in the enzymatic and transport processes that lead to resorption of the mineralized matrix. Bone resorption occurs following recruitment, activation, and polarization of osteoclasts. Tiludronate disodium appears to inhibit osteoclasts through at least two mechanisms: disruption of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. SKELID is indicated for treatment of Paget's disease of bone (osteitis deformans).
Status:
US Previously Marketed
First approved in 1977

Class (Stereo):
CHEMICAL (ACHIRAL)



Etidronate is a salt of etidronic acid (brand name Didronel, also known as EHDP) a diphosphonate, which is indicated for the treatment of symptomatic Paget’s disease of bone and in the prevention and treatment of heterotopic ossification following total hip replacement or due to spinal cord injury. Didronel is not approved for the treatment of osteoporosis. This drugs acts primarily on bone. It can inhibit the formation, growth, and dissolution of hydroxyapatite crystals and their amorphous precursors by chemisorption to calcium phosphate surfaces. Inhibition of crystal resorption occurs at lower doses than are required to inhibit crystal growth. Both effects increase as the dose increases. Preclinical studies indicate etidronate disodium does not cross the blood-brain barrier. Didronel is not metabolized. The amount of drug absorbed after an oral dose is approximately 3 percent. Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone.
mixture
Status:
Possibly Marketed Outside US
Source:
NCT03935984: Phase 4 Interventional Recruiting Primary Hyperparathyroidism
(2019)
Source URL:

Class:
MIXTURE

Teriparatide was manufactured under the brand name FORTEO. FORTEO contains recombinant human parathyroid hormone (1-34), [rhPTH(1-34)], which has an identical sequence to the 34 N-terminal amino acids (the biologically active region) of the 84-amino acid human parathyroid hormone, that regulates calcium and phosphate in the body. FORTEO is indicated for the treatment of postmenopausal women with severe osteoporosis who are at high risk of fracture or who have failed or are intolerant to previous osteoporosis therapy. In addition, Forteo is used for the treatment of osteoporosis associated with sustained systemic glucocorticoid therapy in men and women who are at increased risk for fracture. The biological actions of teriparatide is mediated through binding to specific high-affinity cell-surface receptors. Teriparatide is not expected to accumulate in bone or other tissues.

Showing 1 - 10 of 11 results