{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Chemical Ingredients [Chemical/Ingredient]|Polycyclic Compounds [Chemical/Ingredient]" in comments (approximate match)
Status:
US Approved Rx
(2015)
Source:
ANDA091620
(2015)
Source URL:
First approved in 2005
Source:
NDA021821
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tigecycline (INN) is an antibiotic used to treat a number of bacterial infections. It is a first in class glycylcycline that is administered intravenously. For the treatment of infections caused by susceptible strains of the designated microorganisms in the following conditions: Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes and Bacteroides fragilis. Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros. Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.
Status:
US Approved Rx
(2004)
Source:
NDA021361
(2004)
Source URL:
First approved in 2004
Source:
NDA021361
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Rifaximin is a structural analog of rifampin and a non-systemic, gastrointestinal site-specific antibiotic. Rifaximin acts by inhibiting bacterial ribonucleic acid (RNA) synthesis and contributes to restore intestinal microflora imbalance. It is FDA approved for the treatment of travelers’ diarrhea, reduction in risk of overt hepatic encephalopathy (HE) recurrence and treatment of irritable bowel syndrome with diarrhea. More common side effects are: black, tarry stools; dizziness or lightheadedness; muscle spasm; rapid breathing; shortness of breath; trouble sleeping. Co-administration of cyclosporine, with XIFAXAN resulted in 83-fold and 124-fold increases in rifaximin mean Cmax in healthy subjects.
Status:
US Approved Rx
(2019)
Source:
ANDA207647
(2019)
Source URL:
First approved in 2001
Source:
NDA021337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ertapenem is a carbapenem antibiotic marketed by Merck as Invanz. The bactericidal activity of ertapenem results from the inhibition of cell wall synthesis and is mediated through ertapenem binding to penicillin binding proteins (PBPs). In Escherichia coli, it has strong affinity toward PBPs 1a, 1b, 2, 3, 4 and 5 with preference for PBPs 2 and 3. Ertapenem has been designed to be effective against Gram-negative and Gram-positive bacteria. The most common drug-related adverse experiences in patients treated with INVANZ, including those who were switched to therapy with an oral antimicrobial, were diarrhea (5.5%), infused vein complication (3.7%), nausea (3.1%), headache (2.2%), vaginitis in females (2.1%), phlebitis/thrombophlebitis (1.3%), and vomiting (1.1%). The coadministration with probenecid to extend the half-life of ertapenem is not recommended.
Status:
US Approved Rx
(2007)
Source:
ANDA065361
(2007)
Source URL:
First approved in 1999
Source:
NDA050778
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Epirubicin is an anthracycline cytotoxic agent, is a 4'-epi-isomer of doxorubicin. The compound is marketed by Pfizer under the trade name Ellence in the US. It is indicated as a component of adjuvant therapy in patients with evidence of axillary node tumor involvement following resection of primary breast cancer. Although it is known that anthracyclines can interfere with a number of biochemical and biological functions within eukaryotic cells, the precise mechanisms of epirubicin’s cytotoxic and/or antiproliferative properties have not been completely elucidated. It is known, that epirubicin forms a complex with DNA by intercalation of its planar rings between nucleotide base pairs, with consequent inhibition of nucleic acid (DNA and RNA) and protein synthesis. Such intercalation triggers DNA cleavage by topoisomerase II, resulting in cytocidal activity. Epirubicin also inhibits DNA helicase activity, preventing the enzymatic separation of double-stranded DNA and interfering with replication and transcription. Epirubicin is also involved in oxidation/reduction reactions by generating cytotoxic free radicals.
Status:
US Approved Rx
(1999)
Source:
NDA050747
(1999)
Source URL:
First approved in 1999
Source:
SYNERCID by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Quinupristin is an antibiotic compound and a semisynthetic derivative of pristinamycin Ia. Quinupristin is a combination of three peptide macrolactones. Quinupristin is used in combination with dalfopristin, another antibiotic, under the trade name Synercid. Synercid is indicated for treatment of complicated skin and skin structure infections caused by methicillin-susceptible Staphylococcus aureus or Streptococcus pyogenes. The mechanism of action of quinupristin is inhibition of the late phase of protein synthesis in the bacterial ribosome. Quinupristin binds to 23S rRNA within the 50S ribosomal subunit and prevents elongation of the polypeptide as well as causing incomplete chains to be released. Adverse reactions to Synercid include inflammation at infusion site, rash, nausea, vomiting and others.
Status:
US Approved Rx
(2021)
Source:
ANDA209931
(2021)
Source URL:
First approved in 1999
Source:
NDA021055
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Bexarotene (Targretin) is an antineoplastic agent indicated by the FDA for Cutaneous T cell lymphoma. It has been used off-label for lung cancer, breast cancer, and Kaposi's sarcoma. Bexarotene is a member of a subclass of retinoids that selectively activate retinoid X receptors (RXRs). These retinoid receptors have biologic activity distinct from that of retinoic acid receptors (RARs). Bexarotene selectively binds and activates retinoid X receptor subtypes (RXRa, RXRb, RXRg). RXRs can form heterodimers with various receptor partners such as retinoic acid receptors (RARs), vitamin D receptor, thyroid receptor, and peroxisome proliferator activator receptors (PPARs). Once activated, these receptors function as transcription factors that regulate the expression of genes that control cellular differentiation and proliferation. Bexarotene inhibits the growth in vitro of some tumor cell lines of hematopoietic and squamous cell origin. It also induces tumor regression in vivo in some animal models. The exact mechanism of action of bexarotene in the treatment of cutaneous T-cell lymphoma (CTCL) is unknown.
Status:
US Approved Rx
(1999)
Source:
NDA050747
(1999)
Source URL:
First approved in 1999
Source:
SYNERCID by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Dalfopristin is a pristinamycin-like component of anti-bacterial drug called Synercid which also containes quinupristin (quinupristin:dalfopristin ratio is 30:70 (w/w)). The drug was approved by FDA and used for the treatment of skin diseases caused by Staphylococcus aureus or Streptococcus pyogenes. Dalfopristin binds to the RNA of the 50S ribosomal subunit and thus inhibits the late phase of protein synthesis.
Status:
US Approved Rx
(2013)
Source:
ANDA091101
(2013)
Source URL:
First approved in 1999
Source:
NDA020862
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Doxercalciferol is a synthetic vitamin D2 analog that undergoes metabolic activation in vivo to form 1α,25-dihydroxyvitamin D2 (1α,25-(OH)2D2), a naturally occurring, biologically active form of vitamin D2. Doxercalciferol is indicated for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on dialysis, as well as for the treatment of secondary hyperparathyroidism in patients with Stage 3 or Stage 4 chronic kidney disease. Doxercalciferol is marketed under the brand name Hectorol by Genzyme Corporation, and is manufactured by Catalent Pharma Solutions, Inc.
Status:
US Approved Rx
(1998)
Source:
NDA021024
(1998)
Source URL:
First approved in 1998
Source:
NDA021024
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
PRIFTIN® (rifapentine) is indicated in adults and children 12 years and older for the treatment of active pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis. PRIFTIN must always be used in combination with one or more antituberculosis (anti-TB) drugs to which the isolate is susceptible. Rifapentine is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. And it acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. Because of rapid emergence of resistant bacteria, use is restricted to treatment of mycobacterial infections and a few other indications. Rifampin is well absorbed when taken orally and is distributed widely in body tissues and fluids, including the CSF. It is metabolized in the liver and eliminated in bile and, to a much lesser extent, in urine, but dose adjustments are unnecessary with renal insufficiency. Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages.
Status:
US Approved Rx
(2016)
Source:
ANDA204327
(2016)
Source URL:
First approved in 1998
Source:
NDA020819
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Paricalcitol (Zemplar) is a synthetic vitamin D(2) analogue that inhibits the secretion of parathyroid hormone (PTH) through binding to the vitamin D receptor. It is approved in the US and in most European nations for intravenous use in the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure in adult, and in the US paediatric, patients. Paricalcitol effectively reduced elevated serum PTH levels and was generally well tolerated in children and adults with secondary hyperparathyroidism associated with chronic renal failure. In well designed clinical trials, paricalcitol was as effective as calcitriol and as well tolerated in terms of the incidence of prolonged hypercalcaemia and/or elevated calcium-phosphorus product (Ca x P). Preclinical and in vitro studies have demonstrated that paricalcitol's biological actions are mediated through binding of the vitamin D receptor, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion.