U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 26 results

Tedizolid phosphate is an oxazolidinone prodrug which in the body is dephosphorylated to the active compound tedizolid. The antibacterial activity of tedizolid is mediated by binding to the 50S subunit of the bacterial ribosome resulting in inhibition of protein synthesis. Tedizolid inhibits bacterial protein synthesis through a mechanism of action different from that of other non-oxazolidinone class antibacterial drugs; therefore, cross-resistance between tedizolid and other classes of antibacterial drugs is unlikely. Tedizolid is bacteriostatic against Gram Positive bacteria such as enterococci, staphylococci, and streptococci. No drug-drug interactions were identified with tedizolid.
Oritavancin is an glycopeptide antibiotic with bactericidal activity effective in treating infections caused by Gram-positive organisms. It treats complicated skin and skin structure infections. This drug demonstrates similar activity to vancomycin, but it has stronger activity against Staphylococcus and Enterococcus. The pharmacokinetics and pharmacodynamics of oritavancin appear to be favourable and once-daily dosing is likely. The incidence of multi-drug resistant bacteria is increasing and explorations into additional treatment options are essential. Oritavancin is marketed under the brand name Orbactiv. Orbactiv is indicated for the treatment of adult patients with acute bacterial skin and skin structure infections caused or suspected to be caused by susceptible isolates of designated Gram-positive microorganisms. Oritavancin has the following mechanism of action: 1) Inhibition of the transglycosylation (polymerisation) step of cell wall biosynthesis by binding to the stem peptide of peptidoglycan precursors 2) Inhibition of the transpeptidation (crosslinking) step of cell wall biosynthesis by binding to the peptide bridging segments of the cell wall 3) Disruption of bacterial membrane integrity, leading to depolarisation, increased permeability and rapid cell death.
TELAVANCIN (VIBATIV®) is a lipoglycopeptide antibacterial that is a synthetic derivative of vancomycin. It exerts concentration-dependent, bactericidal activity against Gram-positive organisms in vitro. TELAVANCIN (VIBATIV®) inhibits cell wall biosynthesis by binding to late-stage peptidoglycan precursors, including lipid II. It also binds to the bacterial membrane and disrupts membrane barrier function. TELAVANCIN (VIBATIV®) is indicated for the treatment of adult patients with complicated skin and skin structure infections caused by susceptible isolates of the following Gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and -resistant isolates), Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus anginosus group (includes S. anginosus, S. intermedius, and S. constellatus), or Enterococcus faecalis (vancomycin-susceptible isolates only). It is also indicated for the treatment of adult patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP), caused by susceptible isolates of Staphylococcus aureus (both methicillin-susceptible and -resistant isolates). It should be reserved for use when alternative treatments are not suitable.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Tinidazole is a synthetic antiprotozoal agent, formally known as 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole and a second-generation 2-methyl-5-nitroimidazole. Tinidazole is a prodrug and antiprotozoal agent. The nitro group of tinidazole is reduced in Trichomonas by a ferredoxin-mediated electron transport system. The free nitro radical generated as a result of this reduction is believed to be responsible for the antiprotozoal activity. It is suggested that the toxic free radicals covalently bind to DNA, causing DNA damage and leading to cell death. The mechanism by which tinidazole exhibits activity against Giardia and Entamoeba species is not known. Tindamax oral tablets are indicated for the treatment of trichomoniasis caused by T. vaginalis in both female and male patients assuming the organism has been identified by appropriate diagnostic procedures. Because trichomoniasis is a sexually transmitted disease with potentially serious sequelae, partners of infected patients should be treated simultaneously in order to prevent re-infection. Tindamax oral tablets are also indicated for the treatment of giardiasis caused by G. duodenalis (also termed G. lamblia) in both adults and pediatric patients older than three years of age. Another indication for Tindamax oral tablets is the treatment of intestinal amebiasis and amebic liver abscess caused by E. histolytica in both adults and pediatric patients older than three years of age. It is not indicated in the treatment of asymptomatic cyst passage. The most common side effects reported with tinidazole are upset stomach, bitter taste and itchiness. Other side effects include headache, physical fatigue, and dizziness. Anecdotally, people who have taken both metronidazole and tinidazole report toxicity is much the same except the side effects don't last as long with the latter. Drinking alcohol while taking tinidazole causes an unpleasant disulfiram-like reaction which includes nausea, vomiting, headache, increased blood pressure, flushing, and shortness of breath.
Daptomycin is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms. Daptomycin has a distinct mechanism of action, disrupting multiple aspects of bacterial cell membrane function. It inserts into the cell membrane in a phosphatidylglycerol-dependent fashion, where it then aggregates. The aggregation of daptomycin alters the curvature of the membrane, which creates holes that leak ions. This causes rapid depolarization, resulting in a loss of membrane potential leading to inhibition of protein, DNA, and RNA synthesis, which results in bacterial cell death. Daptomycin is bactericidal against Gram-positive bacteria only. It has proven in vitro activity against enterococci (including glycopeptide-resistant enterococci (GRE)), staphylococci (including methicillin-resistant Staphylococcus aureus), streptococci, corynebacteria and stationary-phase Borrelia burgdorferi persisters.
Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Fosfomycin (marketed under the trade names Monurol and Monuril) is a broad-spectrum antibiotic. Monurol (fosfomycin tromethamine) sachet contains fosfomycin tromethamine, a synthetic, broad spectrum, bactericidal antibiotic for oral administration. Monurol is indicated only for the treatment of uncomplicated urinary tract infections (acute cystitis) in women due to susceptible strains of Escherichia coli and Enterococcus faecalis. Fosfomycin is a phosphoenolpyruvate analogue produced by Streptomyces that irreversibly inhibits enolpyruvate transferase (MurA), which prevents the formation of N-acetylmuramic acid, an essential element of the peptidoglycan cell wall.
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Vancomycin is a branched tricyclic glycosylated nonribosomal peptide produced by the fermentation of the Actinobacteria species Amycolatopsis orientalis (formerly Nocardia orientalis). Vancomycin became available for clinical use >50 years ago. It is often reserved as the "drug of last resort", used only after treatment with other antibiotics had failed. Vancomycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections: Listeria monocytogenes, Streptococcus pyogenes, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus agalactiae, Actinomyces species, and Lactobacillus species. The combination of vancomycin and an aminoglycoside acts synergistically in vitro against many strains of Staphylococcus aureus, Streptococcus bovis, enterococci, and the viridans group streptococci. The bactericidal action of vancomycin results primarily from inhibition of cell-wall biosynthesis. Specifically, vancomycin prevents the incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, vancomycin alters bacterial-cell-membrane permeability and RNA synthesis. There is no cross-resistance between vancomycin and other antibiotics. Vancomycin is not active in vitro against gram-negative bacilli, mycobacteria, or fungi.
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.