{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
amphotericin b
to a specific field?
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
SB-271046 is one of the first selective 5-HT6 receptor antagonists to be discovered. SB-271046 is a
potent, selective and orally active 5-HT6 receptor antagonist with a pKi value of 8.9. This compound provides a useful tool for further elucidating
the physiological function of 5-HT6 receptors in vivo. SB-271046 was found to increase levels of the excitatory amino acid neurotransmitters glutamate and aspartate, as well as dopamine and noradrenaline in the frontal cortex and hippocampus of rats, and 5-HT6 antagonists have been shown to produce nootropic effects in a variety of animal studies. Suggested applications of SB-271046 included treatment of schizophrenia and other psychiatric disorders. A phase I clinical development of SB-271046 by GlaxoSmithKline (GSK) was discontinued due to a poor BBB permeability.
Z-N-desmethyldoxepin is an active metabolite of doxepin, a tricyclic antidepressant. Z-N-desmethyldoxepin appeared to be a terminal oxidative metabolite, in comparison with isomeric form E-N-desmethyl-doxepin, which is undergone further oxidation under the action of CYP2D6 activity.