U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 851 - 860 of 908 results

Status:
US Previously Marketed
Source:
Oralator by Smith Kline & French
(1946)
Source URL:
First approved in 1946
Source:
Oralator by Smith Kline & French
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Octodrine is a stimulant that is structurally similar to amphetamine and is included in several so-called “pre-workout” and “fat-burning” supplements. Octodrine, has a history of use as a pharmaceutical drug. It was originally developed in the United States as an aerosolized treatment for bronchitis, laryngitis and other conditions Initially approved by the FDA in 1946 as Eskay’s Oralator, this inhaler appeared only in the 1949 edition of the Physicians’ Desk Reference. Octodrine was combined with several other medications, including theophylline, 3-octopamine, and adenosine, in multi-ingredient tablets sold between the early 1960s through the mid-2000s under the trade names Ambredin, Ordinal, Ordinal Retard and Ordinal Forte. Some proponents say octodrine is a safer alternative to other stimulants like ephedra and Dimethylamylamine (DMAA), but there is no scientific information to support this claim. Originally developed in the early 1950’s as a remedy to nasal congestion and as a possible anti-tumor drug, Octodrine has resurfaced as a key ingredient in dietary supplements for its stimulant and thermogenic benefits.
Status:
US Previously Marketed
Source:
CVP WITH VITAMIN K BIOFLAVONOID by USV
(1961)
Source URL:
First marketed in 1921
Source:
bioflavonoid
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Hesperidin is a flavanone glycoside found in citrus fruits. Its aglycone form is called hesperetin. Its name is derived from the word "hesperidium", for fruit produced by citrus trees. Hesperidin was first isolated in 1828 by French chemist Lebreton from the white inner layer of citrus peels (mesocarp, albedo). As a flavanone found in citrus fruits (such as oranges, lemons or pummelo fruits), hesperidin is under laboratory research for possible biological properties. One area of research is focused on the possible chemopreventive effects of hesperidin, but there is no current proof that hesperidin has this role in human cancer mechanisms. Hesperidin was effective in an animal model of Alzheimer's, alleviating pathological changes induced by aluminum. Early research suggests that taking one tablet of a specific product (Daflon 500, Les Laboratoires Servier) containing hesperidin and diosmin by mouth for 45 days decreases blood sugar levels and improves blood sugarcontrol in women with type 2 diabetes. For Rheumatoid arthritis (RA): early research suggests that drinking a beverage containing alpha-glucosyl hesperidin for 12 weeks improves symptoms of RA. Orally, hesperidin can cause gastrointestinal side effects, including abdominal pain, diarrhea, and gastritis. Headache can also occur in some patients. The possible anti-inflammatory action of hesperidin is probably due to the possible anti-inflammatory action of its aglycone hesperetin. Hesperetin appears to interfere with the metabolism of arachidonic acid as well as with histamine release. Hesperetin appears to inhibit phospholipase A2, lipoxygenase and cyclo-oxygenase. There is evidence that hesperetin inhibits histamine release from mast cells, which would account for the possible anti-allergic activity of hesperidin. The possible hypolipidemic effect of hesperidin is probably due to hesperetin's possible action in lipid lowering. Hesperetin may reduce plasma cholesterol levels by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, as well as acyl coenzyme A: cholesterol acytransferase (ACAT). Inhibition of these enzymes by hesperetin has been demonstrated in rats fed a high cholesterol diet. The mechanism of hesperidin's possible vasoprotective action is unclear. Animal studies have shown that hesperidin decreases microvascular permeability. Hesperidin, itself or via hesperetin, may protect endothelial cells from hypoxia by stimulating certain mitochondrial enzymes, such as succinate dehydrogenase. The mechanism of hesperidin's possible anticarcinogenic action is also unclear. One explanation may be the inhibition of polyamine synthesis. Inhibition of lipoxygenase and cyclo-oxygenase is another possibility.
Status:
US Previously Marketed
Source:
VI SYNERAL DL-ALPHA TOCOPHERYL ACETATE by FISONS
(1961)
Source URL:
First marketed in 1921
Source:
DL-alpha tocopheryl acetate
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



dl-α-tocopheryl phosphate has a growth acceleration effect on domestic fowl. Also was confirmed, that in all investigated animals dl-α-tocopheryl phosphate has an ability to being converted into vitamin E.
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
US Previously Marketed
Source:
VI SYNERAL DL-ALPHA TOCOPHERYL ACETATE by FISONS
(1961)
Source URL:
First marketed in 1921
Source:
DL-alpha tocopheryl acetate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



dl-α-tocopheryl phosphate has a growth acceleration effect on domestic fowl. Also was confirmed, that in all investigated animals dl-α-tocopheryl phosphate has an ability to being converted into vitamin E.
Status:
US Previously Marketed
Source:
VI SYNERAL DL-ALPHA TOCOPHERYL ACETATE by FISONS
(1961)
Source URL:
First marketed in 1921
Source:
DL-alpha tocopheryl acetate
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



dl-α-tocopheryl phosphate has a growth acceleration effect on domestic fowl. Also was confirmed, that in all investigated animals dl-α-tocopheryl phosphate has an ability to being converted into vitamin E.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
VI SYNERAL DL-ALPHA TOCOPHERYL ACETATE by FISONS
(1961)
Source URL:
First marketed in 1921
Source:
DL-alpha tocopheryl acetate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



dl-α-tocopheryl phosphate has a growth acceleration effect on domestic fowl. Also was confirmed, that in all investigated animals dl-α-tocopheryl phosphate has an ability to being converted into vitamin E.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Procaine is an anesthetic agent indicated for production of local or regional anesthesia, particularly for oral surgery. Procaine (like cocaine) has the advantage of constricting blood vessels which reduces bleeding, unlike other local anesthetics like lidocaine. Procaine is an ester anesthetic. It is metabolized in the plasma by the enzyme pseudocholinesterase through hydrolysis into para-aminobenzoic acid (PABA), which is then excreted by the kidneys into the urine. Procaine acts mainly by inhibiting sodium influx through voltage gated sodium channels in the neuronal cell membrane of peripheral nerves. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is thus inhibited. The receptor site is thought to be located at the cytoplasmic (inner) portion of the sodium channel. Procaine has also been shown to bind or antagonize the function of N-methyl-D-aspartate (NMDA) receptors as well as nicotinic acetylcholine receptors and the serotonin receptor-ion channel complex.

Showing 851 - 860 of 908 results