U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 841 - 850 of 906 results

Status:
First marketed in 1921
Source:
Sodium Nitrite U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Nitrite Ion is a symmetric anion with equal N–O bond lengths. Nitrite is important in biochemistry as a source of the potent vasodilator nitric oxide. Nitrate or nitrite (ingested) under conditions that result in endogenous nitrosation has been classified as "Probably carcinogenic to humans" (Group 2A) by International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization (WHO) of the United Nations. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, as it is a reducing agent (opposite of oxidation agent), in a reaction with the meat's myoglobin, gives the product a desirable pink-red "fresh" color, such as with corned beef. This use of nitrite goes back to the Middle Ages, and in the US has been formally used since 1925. Because of the relatively high toxicity of nitrite (the lethal dose in humans is about 22 milligrams per kilogram of body weight), the maximum allowed nitrite concentration in meat products is 200 ppm. At these levels, some 80 to 90% of the nitrite in the average U.S. diet is not from cured meat products, but from natural nitrite production from vegetable nitrate intake. Under certain conditions – especially during cooking – nitrites in meat can react with degradation products of amino acids, forming nitrosamines, which are known carcinogens. However, the role of nitrites (and to some extent nitrates) in preventing botulism by preventing C. botulinum endospores from germinating have prevented the complete removal of nitrites from cured meat, and indeed by definition in the U.S., meat cannot be labeled as "cured" without nitrite addition. They are considered irreplaceable in the prevention of botulinum poisoning from consumption of cured dry sausages by preventing spore germination. Nitrite is a member of the drug class antidotes and is used to treat Cyanide Poisoning.
Sodium thiosulfate (sodium thiosulphate/STS) is a chemical and medication. As a medication, it is used in combination with sodium nitrite under the trade name to NITHIODOTE treat cyanide poisoning. The primary route of endogenous cyanide detoxification is by enzymatic transulfuration to thiocyanate (SCN- ), which is relatively nontoxic and readily excreted in the urine. Sodium thiosulfate is thought to serve as a sulfur donor in the reaction catalyzed by the enzyme rhodanese, thus enhancing the endogenous detoxification of cyanide. In addition, Sodium thiosulfate is used in calciphylaxis in hemodialysis patients with end-stage kidney disease. Calciphylaxis is vasculopathy characterized by ischemia and painful skin necrosis due to calcification and intimal fibroplasia of thrombosis of the panicular arterioles. Sodium thiosulfate is used as treatment due to its antioxidant activity and as a chelating. Sodium thiosulfate renders renal protection by modulating the mitochondrial KATP channel for preventing urolithiasis. Moreover, STS was assumed to play a vital role in on ischemia reperfusion injury (IR). The effectiveness of STS as a cardioprotective agent was attributed to the reduction of apoptosis by binding to the active site of caspase-3 in silico, which was substantiated by the reduced expression of caspase-3 and poly ADP ribose polymerase levels.
Status:
First marketed in 1921
Source:
Potassium Sulphate N.F.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

SULFATE (as sodium sulfate, potassium sulfate, and magnesium sulfate) is a component of SUPREP Bowel Prep Kit. It is an osmotic laxative indicated for cleansing of the colon in preparation for colonoscopy in adults. Sulfate salts provide sulfate anions, which are poorly absorbed. The osmotic effect of unabsorbed sulfate anions and the associated cations causes water to be retained within the gastrointestinal tract. SUPREP Bowel Prep Kit, when ingested with a large volume of water, produces copious watery diarrhea.
Status:
First marketed in 1921
Source:
Sodium Chloride U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Hydroxocobalamin (also hydroxycobalamin, OHCbl) is a natural form, or vitamer, of vitamin B12. It is a member of the cobalamin family of compounds. Hydroxocobalamin, the active ingredient in Cyanokit, is cobinamide dihydroxide dihydrogen phosphate (ester), mono (inner salt), 3’-ester with 5,6-dimethyl-1-α-D-ribofuranosyl-1H-benzimidazole. The drug substance is the hydroxylated active form of vitamin B12 and is a large molecule in which a trivalent cobalt ion is coordinated in four positions by a tetrapyrol (or corrin) ring. It is a hygroscopic, odorless, dark red, crystalline powder that is freely soluble in water and ethanol, and practically insoluble in acetone and diethyl ether. Cyanokit contains hydroxocobalamin, an antidote indicated for the treatment of known or suspected cyanide poisoning. Cyanide is an extremely toxic poison. In the absence of rapid and adequate treatment, exposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well. Signs and symptoms of acute systemic cyanide poisoning may develop rapidly within minutes, depending on the route and extent of cyanide exposure. The action of Cyanokit is based on its ability to bind cyanide ions. Each hydroxocobalamin molecule can bind one cyanide ion by substituting it for the hydroxo ligand linked to the trivalent cobalt ion, to form cyanocobalamin, which is then excreted in the urine.
Status:
US Approved OTC
Source:
21 CFR 355.10(b)(1) anticaries:dentifrices sodium monolfuorophosphate (gel or paste)
Source URL:
First approved in 1953
Source:
NDK Fluoride Dentrifice by NOK
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Monofluorophosphate (MFP) is an anion, which is a phosphate group with one oxygen atom substituted with a fluorine atom. Sodium Monofluorophosphate is intended to be used by both petitioners in food supplements as a source of fluoride in the forms of multi-vitamin, multi-mineral supplements, solid tablets or tablets dispersible in liquid. The toxic effects of Monofluorophosphate are attributable to the fluoride ion released by the in vivo hydrolysis of the parent compound. The Monofluorophosphate ion appears to play no role. The acute toxicity of Monofluorophosphate is somewhat less than that of NaF, due to the lesser availability of fluoride in the short term from Monofluorophosphate. In the long term, Monofluorophosphate produces virtually the same picture of renal effects and skeletal storage of fluoride as does NaF. Sodium Monofluorophosphate dissociates into sodium and Monofluorophosphate ions in the intestinal tract, the latter being absorbed mainly in the upper small intestine.
Status:
US Approved OTC
Source:
21 CFR 355.10(c)(1)(ii) anticaries:dentifrices stannous fluoride
Source URL:
First marketed in 1921
Source:
Calcium Oxide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Oleylamine (or oleamine) is a versatile and flexible reagent in synthesis as well as the desired surface ligand for the synthesis of nanoparticles. This compound is rather toxic to mammalian organism.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
Investigational
Source:
INN:Deulinoleic acid [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
NCT00942656: Not Applicable Interventional Completed Cardiovascular Disease
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Vaccenic acid (VA) (t11 octadecenoic acid) is a positional and geometric isomer of oleic acid (c9-octadecenoic acid), and is the predominant trans monoene in ruminant fats (50%–80% of total trans content). Dietary VA can be desaturated to cis-9,trans-11 conjugated linoleic acid (c9,t11-CLA) in ruminants, rodents, and humans. Hydrogenated plant oils are another source of VA in the diet, and it has been recently estimated that this source may contribute to about 13%–17% of total VA intake. In contrast to suggestions from the epidemiological studies, the majority of studies using cancer cell lines (Awad et al. 1995; Miller et al. 2003) or rodent tumors (Banni et al. 2001; Corl et al. 2003; Ip et al. 1999; Sauer et al. 2004) have demonstrated that VA reduces cell growth and (or) tumor metabolism. Animal and in vitro studies suggest that the anti-cancer properties of VA are due, in part, to the in vivo conversion of VA to c9,t11-CLA. However, several additional mechanisms for the anti-cancer effects of VA have been proposed, including changes in phosphatidylinositol hydrolysis, reduced proliferation, increased apoptosis, and inhibition of fatty acid uptake. In conclusion, although the epidemiological evidence of VA intake and cancer risk suggests a positive relationship, this is not supported by the few animal studies that have been performed. The majority of the studies suggest that any health benefit of VA may be conferred by in vivo mammalian conversion of VA to c9,t11-CLA. VA acts as a partial agonist to both peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ in vitro, with similar affinity compared to commonly known PPAR agonists. Hypolipidemic and antihypertrophic bioactivity of VA is potentially mediated via PPAR-/-dependent pathways.
Status:
Investigational
Source:
NCT01320579: Phase 2 Human clinical trial Completed Dermatitis, Atopic/diagnosis/immunology
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Urocanic acid is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e. g. , pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. It has also been proposed that c-UA may mediate the transient alteration in immune surveillance resulting in immunosuppression induced after UV-irradiation, by interacting with immune cells locally and/or systemically to generate T cells with suppressor function.

Showing 841 - 850 of 906 results