{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dopamine
to a specific field?
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.