{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG|Positive" in comments (approximate match)
Status:
US Approved Rx
(2019)
Source:
NDA211810
(2019)
Source URL:
First approved in 2019
Source:
NDA211810
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pexidartinib (PLX3397) is a small-molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Pexidartinib binds to and inhibits phosphorylation of stem cell factor receptor (KIT), colony-stimulating factor-1 receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3), which may result in the inhibition of tumor cell proliferation and down-modulation of macrophages, osteoclasts and mast cells involved in the osteolytic metastatic disease. FDA has granted Breakthrough Therapy Designation to pexidartinib (PLX3397) for the treatment of tenosynovial giant cell tumor (TGCT) where surgical removal of the tumor would be associated with potentially worsening functional limitation or severe morbidity. In addition to Breakthrough Therapy Designation, pexidartinib (PLX3397) has been granted Orphan Drug Designation by FDA for the treatment of pigmented villonodular synovitis (PVNS) and giant cell tumor of the tendon sheath (GCT-TS). It also has received Orphan Designation from the European Commission for the treatment of TGCT.
Status:
US Approved Rx
(2019)
Source:
NDA212161
(2019)
Source URL:
First approved in 2019
Source:
NDA212161
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tafamidis meglumine (Vyndaqel®, Pfizer) is a novel, first-in-class drug for the treatment of transthyretin familial amyloid polyneuropathy (TTR-FAP), a rare neurodegenerative disorder characterized by progressive sensory, motor and autonomic impairment that is ultimately fatal. Pathogenic mutations in the transthyretin (TTR) protein lead to destabilization of its tetrameric structure and subsequent formation of amyloid aggregates. Tafamidis is a small-molecule inhibitor that binds selectively to TTR in human plasma and kinetically stabilizes the tetrameric structure of both wild-type TTR and a number of different mutants. Clinical trials indicate that tafamidis slows disease progression in patients with TTR-FAP and reduces the burden of disease, demonstrating improvement in small and large nerve fiber function, modified body mass index and lower extremity neurological examination. Tafamidis meglumine has been launched for TTR FAP in the EU, Japan, Argentina, Malta and Mexico, and is preregistration in the US for this indication.
Status:
US Approved Rx
(2018)
Source:
NDA210656
(2018)
Source URL:
First approved in 2018
Source:
NDA210656
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
PF-04449913 is a potent and selective inhibitor of the Hh signaling pathway through binding to the target, smoothened. PF-04449913 inhibits Hh signaling in vitro and has demonstrated significant antitumor activity in vivo. In the clinic, PF-04449913 is being evaluated both in hematological and solid malignancies, with a phase II trial currently underway in both fit and unfit patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). Treatment-related adverse-events were nausea, dizziness, somnolence, QT prolongation and pruritus. Based on pre-clinical assessments, CYP3A4 is believed to be primarily involved in the metabolism of PF-04449913 that is why PF-04449913 plasma exposures and peak concentrations were increased following concurrent administration of ketoconazole (CYP3A4 inhibitor).
Status:
US Approved Rx
(2018)
Source:
NDA211710
(2018)
Source URL:
First approved in 2018
Source:
NDA211710
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Larotrectinib (previously known as ARRY-470 and LOXO-101) is a potent, oral and selective investigational new drug in clinical development for the treatment of patients with cancers that harbor abnormalities involving the tropomyosin receptor kinases (TRKs). Larotrectinib is in phase II clinical trials for the treatment patients with solid tumors, non-Hodgkin lymphoma and for the pediatric patients with advanced solid or primary CNS tumors.
Status:
US Approved Rx
(2018)
Source:
NDA208078
(2018)
Source URL:
First approved in 2018
Source:
NDA208078
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amifampridine (Firdapse), currently approved in the European Union, is the first and only approved drug for the symptomatic treatment of Lambert-Eaton Myasthenic Syndrome (LEMS) in adults, a rare autoimmune disease with the primary symptoms of muscle weakness. In LEMS, the body’s own immune system attacks connections between nerves and muscles and disrupts the ability of nerve cells to send signals to muscle cells. Amifampridine blocks voltage-dependent potassium channels, thereby prolonging pre-synaptic cell
membrane depolarization. Prolonging the action potential enhances the transport of calcium into the nerve
ending. The resulting increase in intracellular calcium concentrations facilitates exocytosis of acetylcholine containing
vesicles, which in turn enhances neuromuscular transmission. Amifampridine phosphate has been granted Orphan Drug Designation and Breakthrough Therapy designation by the FDA for the treatment of Lambert-Eaton Myasthenic Syndrome (LEMS).
Status:
US Approved Rx
(2018)
Source:
NDA208623
(2018)
Source URL:
First approved in 2018
Source:
NDA208623
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Migalastat (Galafold)-a small molecule drug developed by Amicus Therapeutics that restores the activity of specific mutant forms of α-galactosidase-has been approved for the treatment of Fabry disease in the EU in patients with amenable mutations. Migalastat attaches to certain unstable forms of alpha-galactosidase A, stabilising the enzyme. This allows the enzyme to be transported into areas of the cell where it can break down GL-3. Under the trade name Galafold (formerly known as Amigal), Migalastat is used to treat patients aged 16 years or over with Fabry disease. Because the number of patients with Fabry disease is low, the disease is considered ‘rare’, and the US Food and Drug Administration (FDA) assigned Galafold orphan drug status in 2004, and the European Committee for Medicinal Products for Human Use (CHMP) followed in 2006.
Status:
US Approved Rx
(2017)
Source:
NDA209606
(2017)
Source URL:
First approved in 2017
Source:
NDA209606
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Enasidenib, aslo known as AG-221 and CC-90007, is a potent and selective IDH2 inhibitor with potential anticancer activity (IDH2 = Isocitrate dehydrogenase 2). The mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer. The inhibition of mutant IDH2 and its neoactivity is therefore a potential therapeutic treatment for cancer. Enasidenib is an orally available, selective, potent inhibitor of the mutated IDH2 protein, making it a highly targeted investigational medicine for the potential treatment of patients with cancers that harbor an IDH2 mutation. Enasidenib has received orphan drug and fast track designations from the U.S. FDA. Enasidenib mesylate is in phase II clinical trials for Solid tumours and phase III clinical trials for the treatment of acute myeloid leukaemia.
Status:
US Approved Rx
(2017)
Source:
NDA208794
(2017)
Source URL:
First approved in 2017
Source:
NDA208794
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Telotristat (telotristat etiprate) is an ethyl ester prodrug which is hydrolyzed to its active moiety LP-778902 both in vivo
and in vitro. Telotristat etiprate is an orally bioavailable, small-molecule, tryptophan hydroxylase (TPH) inhibitor. It is the first investigational drug in clinical studies to target TPH, an enzyme that triggers the excess serotonin production within metastatic neuroendocrine tumor (mNET) cells leading to carcinoid syndrome. Unlike existing treatments of carcinoid syndrome which reduce the release of serotonin outside tumor cells, telotristat etiprate reduces serotonin production within the tumor cells. By specifically inhibiting serotonin production telotristat may provide patients with more control over their disease. Telotristat etiprate has received Fast Track and Orphan Drug designation from the U.S. Food and Drug Administration and has been granted priority review by the FDA with a Prescription Drug User Fee Act (PDUFA) target action date of February 28, 2017.
Status:
US Approved Rx
(2015)
Source:
NDA208169
(2015)
Source URL:
First approved in 2015
Source:
NDA208169
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.
Status:
US Approved Rx
(2015)
Source:
NDA207500
(2015)
Source URL:
First approved in 2015
Source:
NDA207500
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Isavuconazole is an active form of isavuconazonium, a prodrug which is marketed under the name Cresemba. Isavuconazole inhibits lanosterol 14-alpha demethylase (or CYP51A1) and leads to the accumulation of ergosterol toxic precursors in the fungal cytoplasm. Isavuconazole is indicated for the treatment of invasive aspergillosis and invasive mucormycosis.