{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
tranexamic acid
to a specific field?
Status:
US Previously Marketed
Source:
RENORMAX by SCHERING
(1994)
Source URL:
First approved in 1994
Source:
RENORMAX by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Spirapril (Renormax) is an ACE inhibitor antihypertensive drug used to treat hypertension. Spiraprilat, the active metabolite of spirapril, competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. Spiraprilat may also act on kininase II, an enzyme identical to ACE that degrades the vasodilator bradykinin.
Status:
US Previously Marketed
Source:
RENORMAX by SCHERING
(1994)
Source URL:
First approved in 1994
Source:
RENORMAX by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Spirapril (Renormax) is an ACE inhibitor antihypertensive drug used to treat hypertension. Spiraprilat, the active metabolite of spirapril, competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. Spiraprilat may also act on kininase II, an enzyme identical to ACE that degrades the vasodilator bradykinin.
Status:
US Previously Marketed
Source:
NEUTREXIN by MEDIMMUNE ONCOLOGY
(1993)
Source URL:
First approved in 1993
Source:
NEUTREXIN by MEDIMMUNE ONCOLOGY
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Status:
US Previously Marketed
Source:
LIVOSTIN by NOVARTIS
(1993)
Source URL:
First approved in 1993
Source:
LIVOSTIN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Levocabastine (trade name Livo) is a selective second-generation H1-receptor antagonist used for allergic conjunctivitis. Levocabastine binds the G protein-coupled neurotensin receptor 2 (NTR2), but not NTR1, where it behaves as a weak partial inverse agonist. In an environmental study, LIVOSTIN 0.05% (levocabastine hydrochloride ophthalmic suspension) instilled four times daily was shown to be significantly more effective than its vehicle in reducing ocular itching associated with seasonal allergic conjunctivitis. After instillation in the eye, levocabastine is systemically absorbed. However, the amount of systemically absorbed levocabastine after therapeutic ocular doses is low (mean plasma concentrations in the range of 1-2 ng/mL). Brand name Livostin is no longer available in the U.S., but generic versions may still be available. Common side effects include burning, stinging, itching, or watering of the eyes, eye irritation or discomfort, blurred vision, dry or puffy eyes, headache, nosebleed, nausea, or fatigue.
Status:
US Previously Marketed
Source:
LIVOSTIN by NOVARTIS
(1993)
Source URL:
First approved in 1993
Source:
LIVOSTIN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levocabastine (trade name Livo) is a selective second-generation H1-receptor antagonist used for allergic conjunctivitis. Levocabastine binds the G protein-coupled neurotensin receptor 2 (NTR2), but not NTR1, where it behaves as a weak partial inverse agonist. In an environmental study, LIVOSTIN 0.05% (levocabastine hydrochloride ophthalmic suspension) instilled four times daily was shown to be significantly more effective than its vehicle in reducing ocular itching associated with seasonal allergic conjunctivitis. After instillation in the eye, levocabastine is systemically absorbed. However, the amount of systemically absorbed levocabastine after therapeutic ocular doses is low (mean plasma concentrations in the range of 1-2 ng/mL). Brand name Livostin is no longer available in the U.S., but generic versions may still be available. Common side effects include burning, stinging, itching, or watering of the eyes, eye irritation or discomfort, blurred vision, dry or puffy eyes, headache, nosebleed, nausea, or fatigue.
Status:
US Previously Marketed
Source:
NEUTREXIN by MEDIMMUNE ONCOLOGY
(1993)
Source URL:
First approved in 1993
Source:
NEUTREXIN by MEDIMMUNE ONCOLOGY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
MAXAQUIN by PHARMACIA
(1992)
Source URL:
First approved in 1992
Source:
MAXAQUIN by PHARMACIA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Lomefloxacin hydrochloride (marketed under the following brand names in English speaking countries Maxaquin, Okacyn, Uniquin) is a fluoroquinolone antibiotic used to treat bacterial infections. It is used to treat chronic bronchitis, as well as complicated and uncomplicated urinary tract infections. It is also used as a prophylactic or preventative treatment to prevent urinary tract infections in patients undergoing transrectal or transurethral surgical procedures. Flouroquinolones such as lomefloxacin possess excellent activity against gram-negative aerobic bacteria such as E.coli and Neisseria gonorrhoea as well as gram-positive bacteria including S. pneumoniae and Staphylococcus aureus. They also posses effective activity against shigella, salmonella, campylobacter, gonococcal organisms, and multi drug resistant pseudomonas and enterobacter. Lomefloxacin is a bactericidal fluoroquinolone agent with activity against a wide range of gram-negative and gram-positive organisms. The bactericidal action of lomefloxacin results from interference with the activity of the bacterial enzymes DNA gyrase and topoisomerase IV, which are needed for the transcription and replication of bacterial DNA. DNA gyrase appears to be the primary quinolone target for gram-negative bacteria. Topoisomerase IV appears to be the preferential target in gram-positive organisms. Interference with these two topoisomerases results in strand breakage of the bacterial chromosome, supercoiling, and resealing. As a result DNA replication and transcription is inhibited.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.