{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
methylene blue
to a specific field?
Status:
US Previously Marketed
Source:
SKELID by SANOFI AVENTIS US
(1997)
Source URL:
First approved in 1997
Source:
SKELID by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tiludronic acid is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates. Tiludronate is a first generation (non-nitrogenous) bisphosphonate in the same family as etidronate and clodronate. Tiludronate affects calcium metabolism and inhibits bone resorption and soft tissue calcification. Of the tiludronate that is resorbed (from oral preparation) or infused (for intravenous drugs), about 50% is excreted unchanged by the kidney. The remainder has a very high affinity for bone tissue, and is rapidly absorbed onto the bone surface. Tiludronic acid is marketed under the tradename Skelid. In vitro studies indicate that tiludronate disodium acts primarily on bone through a
mechanism that involves inhibition of osteoclastic activity with a probable reduction in the
enzymatic and transport processes that lead to resorption of the mineralized matrix.
Bone resorption occurs following recruitment, activation, and polarization of osteoclasts.
Tiludronate disodium appears to inhibit osteoclasts through at least two mechanisms: disruption
of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus
leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. SKELID is indicated for treatment of Paget's disease of bone (osteitis deformans).
Status:
US Previously Marketed
Source:
QUADRAMET by LANTHEUS MEDICAL
(1997)
Source URL:
First approved in 1997
Source:
QUADRAMET by LANTHEUS MEDICAL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Samarium SM-153 lexidronam is a chelated complex of a radioisotope of the element samarium with ethylenediamine tetra(methylene phosphonic acid) (EDTMP). Samarium Sm-153 EDTMP has an affinity for bone and concentrates in areas of bone turnover in association with hydroxyapatite. In clinical studies employing planar imaging techniques, more Samarium (153Sm) lexidronam accumulates in osteoblastic lesions than in normal bone with a lesion-to-normal bone ratio of approximately 5. It is indicated for the relief of pain in patients with confirmed osteoblastic metastatic bone lesions that enhance on radionuclide bone scan. It should not be given concurrently with chemotherapy or external beam radiation therapy unless the benefit outweighs the risks. The most common adverse events are: nausea and vomiting, hemoglobin decrease, myasthenia, paresthesia, thrombocytopenia and abdominal pain.
Status:
US Previously Marketed
Source:
TEVETEN HCT by ABBVIE
(2001)
Source URL:
First approved in 1997
Source:
TEVETEN by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. Eprosartan is indicated for the management of hypertension alone or in combination with other classes of antihypertensive agents. Also used as a first-line agent in the treatment of diabetic nephropathy, as well as a second-line agent in the treatment of congestive heart failure (only in those intolerant of ACE inhibitors).
Status:
US Previously Marketed
Source:
HEXALEN by EISAI INC
(1990)
Source URL:
First approved in 1990
Source:
HEXALEN by EISAI INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Altretamine is structurally similar to the alkylating agent triethylenemelamine (tretamine). Although Altretamine structurally resembles an alkylating agent, it has not been found to have alkylating activity in vitro. The precise mechanism of Altretamine cytotoxicity is unknown, although several proposals have been made. Altretamine requires N-demethylation in the liver to produce reactive intermediates (formaldehyde and/or iminium species) which covalently bind to DNA, resulting in DNA damage, or act as alkylating agents. Altretamine is used as a palliative treatment for persistent or recurrent ovarian cancer following treatment failure with a cisplatin- or alkylating agent-based combination. Side effects of Altretamine include nausea and vomiting, neurotoxicity (mood disorders, disorders of consciousness, ataxia, dizziness, vertigo), mild to moderate dose-related myelosuppression. Altretamine has been shown to be embryotoxic and teratogenic in rats and rabbits and may cause fetal damage when administered to a pregnant woman. Under the trade name Hexalen, Altretamine, is an antineoplastic agent. It is indicated for use as a single agent in the palliative treatment of patients with persistent or recurrent ovarian cancer following first-line therapy with a cisplatin and/or alkylating agent-based combination.
Status:
US Previously Marketed
Source:
GUANABENZ ACETATE by CHARTWELL RX
(1998)
Source URL:
First approved in 1982
Source:
WYTENSIN by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Guanabenz, an antihypertensive agent for oral administration-, is an aminoguanidine derivative, 2,'6-dichlorobenzylideneamina-guanidine acetate. It is white to an almost white powder having not more than a slight odor. Sparingly soluble in water and in 0.1 N hydrochloric acid; soluble in alcohol and in propylene glycol.
Guanabenz is an orally active central alpha-2 adrenergic agonist. Its antihypertensive action appears to be mediated via stimulation of central alpha-adrenergic receptors, resulting in a decrease of sympathetic outflow from the brain at the bulbar level to the peripheral circulatory system. In clinical trials, guanabenz acetate, given orally to hypertensive patients, effectively controlled blood pressure without any significant effect on glomerular filtration rate, renal blood flow, body fluid volume or body weight. The Myelin Repair Foundation and the National Institutes of Health (National Institute of Neurological Disorders and Stroke) are developing guanabenz for the treatment of multiple sclerosis. Unlike the currently available treatment for multiple sclerosis that suppresses the immune system, guanabenz, an FDA approved the drug for the treatment of high blood pressure, has a potential to reduce the loss of myelin by protecting and repairing myelin-producing cells in the brain from damage. Phase I development is underway in the US.
Status:
US Previously Marketed
Source:
MECLAN by JOHNSON AND JOHNSON
(1980)
Source URL:
First approved in 1980
Source:
MECLAN by JOHNSON AND JOHNSON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Meclocycline is a tetracycline antibiotic. It is used topically for skin infections treatment. Tetracyclines are broad-spectrum bacteriostatic agents and act by inhibiting protein synthesis by blocking the binding of aminoacyl tRNA (transfer RNA) to the mRNA (messenger RNA) ribosome complex. Meclocycline might increase sensitivity to light when it is used with Aminolevulinic acid.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
BILIVIST by BAYER HLTHCARE
(1982)
Source URL:
First approved in 1962
Source:
ORAGRAFIN CALCIUM by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iopanoic acid and ipodate salts have been used for oral cholangiography to visualize the biliary ducts. Ipodate salts have been used for the long-term treatment of Graves' disease and in hyperthyroidism. Ipodate reduced levels of T3 and T4 in the patients. Ipodate also inhibits the conversion of T4 to T3. It is not considered a first-line approach. Ipodate sodium lacks FDA approval for these uses. During investigation of mechanism of action was discovered, that binding of sodium ipodate with nuclear T3 receptors was not a prominent mechanism via which the drug attenuates T3 effects in vivo. Sodium ipodate could enhance T3 effects at the cellular level and that enhancement could not be reflected by routinely monitored serum TSH.
Status:
US Previously Marketed
Source:
BILIVIST by BAYER HLTHCARE
(1982)
Source URL:
First approved in 1962
Source:
ORAGRAFIN CALCIUM by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iopanoic acid and ipodate salts have been used for oral cholangiography to visualize the biliary ducts. Ipodate salts have been used for the long-term treatment of Graves' disease and in hyperthyroidism. Ipodate reduced levels of T3 and T4 in the patients. Ipodate also inhibits the conversion of T4 to T3. It is not considered a first-line approach. Ipodate sodium lacks FDA approval for these uses. During investigation of mechanism of action was discovered, that binding of sodium ipodate with nuclear T3 receptors was not a prominent mechanism via which the drug attenuates T3 effects in vivo. Sodium ipodate could enhance T3 effects at the cellular level and that enhancement could not be reflected by routinely monitored serum TSH.