{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for methylene root_names_stdName in Standardized Name (approximate match)
Status:
US Previously Marketed
Source:
GUANABENZ ACETATE by CHARTWELL RX
(1998)
Source URL:
First approved in 1982
Source:
WYTENSIN by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Guanabenz, an antihypertensive agent for oral administration-, is an aminoguanidine derivative, 2,'6-dichlorobenzylideneamina-guanidine acetate. It is white to an almost white powder having not more than a slight odor. Sparingly soluble in water and in 0.1 N hydrochloric acid; soluble in alcohol and in propylene glycol.
Guanabenz is an orally active central alpha-2 adrenergic agonist. Its antihypertensive action appears to be mediated via stimulation of central alpha-adrenergic receptors, resulting in a decrease of sympathetic outflow from the brain at the bulbar level to the peripheral circulatory system. In clinical trials, guanabenz acetate, given orally to hypertensive patients, effectively controlled blood pressure without any significant effect on glomerular filtration rate, renal blood flow, body fluid volume or body weight. The Myelin Repair Foundation and the National Institutes of Health (National Institute of Neurological Disorders and Stroke) are developing guanabenz for the treatment of multiple sclerosis. Unlike the currently available treatment for multiple sclerosis that suppresses the immune system, guanabenz, an FDA approved the drug for the treatment of high blood pressure, has a potential to reduce the loss of myelin by protecting and repairing myelin-producing cells in the brain from damage. Phase I development is underway in the US.
Status:
US Previously Marketed
Source:
MECLAN by JOHNSON AND JOHNSON
(1980)
Source URL:
First approved in 1980
Source:
MECLAN by JOHNSON AND JOHNSON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Meclocycline is a tetracycline antibiotic. It is used topically for skin infections treatment. Tetracyclines are broad-spectrum bacteriostatic agents and act by inhibiting protein synthesis by blocking the binding of aminoacyl tRNA (transfer RNA) to the mRNA (messenger RNA) ribosome complex. Meclocycline might increase sensitivity to light when it is used with Aminolevulinic acid.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
BILIVIST by BAYER HLTHCARE
(1982)
Source URL:
First approved in 1962
Source:
ORAGRAFIN CALCIUM by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iopanoic acid and ipodate salts have been used for oral cholangiography to visualize the biliary ducts. Ipodate salts have been used for the long-term treatment of Graves' disease and in hyperthyroidism. Ipodate reduced levels of T3 and T4 in the patients. Ipodate also inhibits the conversion of T4 to T3. It is not considered a first-line approach. Ipodate sodium lacks FDA approval for these uses. During investigation of mechanism of action was discovered, that binding of sodium ipodate with nuclear T3 receptors was not a prominent mechanism via which the drug attenuates T3 effects in vivo. Sodium ipodate could enhance T3 effects at the cellular level and that enhancement could not be reflected by routinely monitored serum TSH.
Status:
US Previously Marketed
Source:
BILIVIST by BAYER HLTHCARE
(1982)
Source URL:
First approved in 1962
Source:
ORAGRAFIN CALCIUM by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iopanoic acid and ipodate salts have been used for oral cholangiography to visualize the biliary ducts. Ipodate salts have been used for the long-term treatment of Graves' disease and in hyperthyroidism. Ipodate reduced levels of T3 and T4 in the patients. Ipodate also inhibits the conversion of T4 to T3. It is not considered a first-line approach. Ipodate sodium lacks FDA approval for these uses. During investigation of mechanism of action was discovered, that binding of sodium ipodate with nuclear T3 receptors was not a prominent mechanism via which the drug attenuates T3 effects in vivo. Sodium ipodate could enhance T3 effects at the cellular level and that enhancement could not be reflected by routinely monitored serum TSH.
Status:
First approved in 1959
Class (Stereo):
CHEMICAL (EPIMERIC)
Furaltadone is a veterinary product, which is marketed for the treatment and control of salmonella infection of poultry. In 1960th was investigated the antibacterial properties of this drug against human Rhodesian sleeping sickness. In three cases treated, two were apparently curated and the third relapsed. No toxic effects attributable to the product had been observed. However, the further investigation of the furaltadone in human was not provided.
Status:
US Previously Marketed
Source:
Orabilex by Fougera
(1958)
Source URL:
First approved in 1958
Source:
Orabilex by Fougera
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
BUNAMIODYL is an cholecystographic agent which was used to aid the radiographic visualization of the gallbladder for detecting the presence of gallstones in cholelithiasis patients. It was withdrawn from the market due to nephropathy.
Status:
First approved in 1953
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Tolonium chloride (INN, also known as toluidine blue or TBO) is a phenothiazine that has been used as a hemostatic, a biological stain, and a dye for wool and silk. Tolonium chloride has also been used as a diagnostic aid for oral and gastric neoplasms and in the identification of the parathyroid gland in thyroid surgery. Toluidine blue has high affinity for acidic tissue components, thereby staining tissues rich in DNA and RNA. It has found wide applications both as vital staining in living tissues and as a special stain owing to its metachromatic property. Toluidine blue has been used in vivo to identify dysplasia and carcinoma of the oral cavity.
Status:
US Previously Marketed
First approved in 1951
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Evans Blue (EBD) is an azo dye which has a very high affinity for serum albumin. It can be useful in physiology in estimating the proportion of body water contained in blood plasma. Evans Blue Dye is widely used to study blood vessel and cellular membrane permeability as it is non-toxic, it can be administered as an intravital dye and it binds to serum albumin – using this as its transporter molecule. The EBD–albumin conjugate (EBA) can be: (i) identified macroscopically by the striking blue colour within tissue; (ii) observed by red auto-fluorescence in tissue sections examined by fluorescence microscopy; and (iii) assessed and quantified by spectrophotometry for serum samples, or homogenised tissue. has recently been utilised in mdx mice to identify permeable skeletal myofibres that have become damaged as a result of muscular dystrophy. EBD has the potential to be a useful vital stain of myofibre permeability in other models of skeletal muscle injury and membrane-associated fragility. Evans Blue is a potent inhibitor of L-glutamate uptake into synaptic vesicles. It also inhibits AMPA and kainate receptor-mediated currents (IC50 values are 220 and 150 nM respectively). P2X-selective purinoceptor antagonist.