{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
penicillin v
to a specific field?
Status:
US Approved Rx
(2007)
Source:
ANDA065409
(2007)
Source URL:
First approved in 1992
Source:
VANTIN by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Conditions:
Cefpodoxime is an orally administered, extended spectrum, semi-synthetic antibiotic of the cephalosporin class. Cefpodoxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefpodoxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefpodoxime is indicated for the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms in the conditions: acute otitis media; pharyngitis and/or tonsillitis; community-acquired pneumonia; acute bacterial exacerbation of chronic bronchitis; gonorrhea; uncomplicated skin and skin structure infections; acute maxillary sinusitis and uncomplicated urinary tract infections (cystitis). Common adverse reactions include diarrhea, nausea, vaginal fungal infections, vulvovaginal infections, abdominal pain, headache. Concomitant administration of high doses of antacids (sodium bicarbonate and aluminum hydroxide) or H2 blockers reduces peak plasma levels by 24% to 42% and the extent of absorption by 27% to 32%, respectively. Oral anti-cholinergics (e.g., propantheline) delay peak plasma levels (47% increase in Tmax), but do not affect the extent of absorption (AUC). Probenecid: As with other beta-lactam antibiotics, renal excretion of cefpodoxime was inhibited by probenecid and resulted in an approximately 31% increase in AUC and 20% increase in peak cefpodoxime plasma levels.
Status:
US Approved Rx
(2004)
Source:
ANDA076550
(2004)
Source URL:
First approved in 1989
Source:
RYTHMOL by GLAXOSMITHKLINE LLC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Propafenone (brand name Rythmol SR or Rytmonorm) is a class 1C anti-arrhythmic medication, which treats illnesses associated with rapid heartbeats such as atrial and ventricular arrhythmias. The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. Propafenone is metabolized primarily in the liver. Because of its short half-life, it requires dosing two or three times daily to maintain steady blood levels. The long-term safety of propafenone is unknown. Because it is structurally similar to another anti-arrhythmic medicine, flecainide, similar cautions should be exercised in its use. Flecainide and propafenone, like other antiarrhythmic drugs, have been shown to increase the occurrence of arrhythmias (5.3% for propafenone, Teva physician prescribing information), primarily in patients with underlying heart disease. However, their use in structurally normal hearts is considered safe.
Status:
US Approved Rx
(2021)
Source:
ANDA211775
(2021)
Source URL:
First approved in 1986
Source:
ANDA065129
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of:
Uncomplicated Urinary Tract Infections
Otitis Media
Pharyngitis and Tonsillitis
Acute Exacerbations of Chronic Bronchitis
Uncomplicated Gonorrhea (cervical/urethral)
Status:
US Approved Rx
(2021)
Source:
ANDA211775
(2021)
Source URL:
First approved in 1986
Source:
ANDA065129
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of:
Uncomplicated Urinary Tract Infections
Otitis Media
Pharyngitis and Tonsillitis
Acute Exacerbations of Chronic Bronchitis
Uncomplicated Gonorrhea (cervical/urethral)
Status:
US Approved Rx
(2021)
Source:
ANDA211775
(2021)
Source URL:
First approved in 1986
Source:
ANDA065129
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of:
Uncomplicated Urinary Tract Infections
Otitis Media
Pharyngitis and Tonsillitis
Acute Exacerbations of Chronic Bronchitis
Uncomplicated Gonorrhea (cervical/urethral)
Status:
US Approved Rx
(2010)
Source:
NDA050814
(2010)
Source URL:
First approved in 1986
Source:
NDA050580
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Status:
US Approved Rx
(2010)
Source:
NDA050814
(2010)
Source URL:
First approved in 1986
Source:
NDA050580
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Status:
US Approved Rx
(2021)
Source:
ANDA211775
(2021)
Source URL:
First approved in 1986
Source:
ANDA065129
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of:
Uncomplicated Urinary Tract Infections
Otitis Media
Pharyngitis and Tonsillitis
Acute Exacerbations of Chronic Bronchitis
Uncomplicated Gonorrhea (cervical/urethral)
Status:
US Approved Rx
(2015)
Source:
NDA206494
(2015)
Source URL:
First approved in 1985
Source:
FORTAZ by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Status:
US Approved Rx
(2003)
Source:
ANDA076421
(2003)
Source URL:
First approved in 1985
Source:
TAMBOCOR by ALVOGEN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Flecainide is a potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Flecainide has local anesthetic activity and belongs to the membrane stabilizing (Class 1) group of antiarrhythmic agents; it has electrophysiologic effects characteristic of the IC class of antiarrhythmics. Flecainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Flecainide is a sodium channel blocker, binding to voltage gated sodium channels. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses. Ventricular excitability is depressed and the stimulation threshold of the ventricle is increased during diastole. Flecainide is sold under the trade name Tambocor (manufactured by 3M pharmaceuticals). Flecainide went off-patent on February 10, 2004. In addition to being marketed as Tambocor, it is also available in generic version and under the trade names Almarytm, Apocard, Ecrinal, and Flécaine.