{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
haloperidol lactate
to a specific field?
Status:
US Previously Marketed
Source:
FARYDAK by SECURA
(2015)
Source URL:
First approved in 2015
Source:
FARYDAK by SECURA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Panobinostat is an oral deacetylace (DAC) inhibitor approved on February 23, 2015 by the FDA for the treatment of multiple myeloma. The approval was accelerated based on progression-free survival, therefore confirmatory trials by the sponsor to demonstrate clinical efficacy in multiple myeloma treatment are in progress of being conducted. Panobinostat is marketed by Novartis under the brand name Farydak. Panobinostat is a deacetylase (DAC) inhibitor. DACs, also known as histone DACs (HDAC), are responsible for regulating the acetylation of about 1750 proteins in the body; their functions are involved in many biological processes including DNA replication and repair, chromatin remodelling, transcription of genes, progression of the cell-cycle, protein degradation and cytoskeletal reorganization. In multiple myeloma, there is an overexpression of DAC proteins. Panobinostat inhibits class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10) and class IV (HDAC 11) proteins. Panobinostat's antitumor activity is believed to be attributed to epigenetic modulation of gene expression and inhibition of protein metabolism. Panobinostat also exhibits cytotoxic synergy with bortezomib, a proteasome inhibitor concurrently used in treatment of multiple myeloma.
Status:
US Previously Marketed
Source:
ZAGAM by MYLAN
(1996)
Source URL:
First approved in 1996
Source:
ZAGAM by MYLAN
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Sparfloxacin is a synthetic fluoroquinolone broad-spectrum antimicrobial agent in the same class as ofloxacin and norfloxacin. Sparfloxacin has in vitro activity against a wide range of gram-negative and gram-positive microorganisms. Sparfloxacin exerts its antibacterial activity by inhibiting DNA gyrase, a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, deactivation, and transcription. Quinolones differ in chemical structure and mode of action from (beta)-lactam antibiotics. Quinolones may, therefore, be active against bacteria resistant to (beta)-lactam antibiotics. Although cross-resistance has been observed between sparfloxacin and other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to sparfloxacin. In vitro tests show that the combination of sparfloxacin and rifampin is antagonistic against Staphylococcus aureus. The bactericidal action of sparfloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination. Sparfloxacin is used for the treatment of adults with the following infections caused by susceptible strains microorganisms: community-acquired pneumonia (caused by Chlamydia pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis, Mycoplasma pneumoniae, or Streptococcus pneumoniae) and acute bacterial exacerbations of chronic bronchitis (caused by Chlamydia pneumoniae, Enterobacter cloacae, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis,Staphylococcus aureus, or Streptococcus pneumoniae). Sparfloxacin has trade names Spacin in Bangladesh, Zagam and Zagam Respipac. Zagam is no longer available in the United States.
Status:
US Previously Marketed
Source:
CHIBROXIN by MERCK
(1991)
Source URL:
First approved in 1986
Source:
NOROXIN by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Norfloxacin is an antibacterial agent, It inhibits inhibits DNA synthesis by inhibiting DNA gyrase enzyme. Norfloxacin was approved in 1986 for treatment of urinary tract infections, gynecological infections, prostatitis, gonorhhea and bladder infections. In ophtalmology, norfloxacin is used for treatment of conjunctivitus.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(20) weight control lysine hydrochloride
Source URL:
First approved in 1971
Source:
NDA016822
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lysing is an essential basic amino-acid encoded by codone AAA and AAG, and used in the biosynthesis of proteins. The daily requirement for lysine is 38 mg/kg body weight. The most rich source of lysine is fish, beef, chicken. In a clinical study lysine supplements was found to be an effective for reduction of occurrence, severity and healing time for recurrent HSV infection, however Cochrane Review concluded that the evidence is insufficient. Lysine was investigated for improving anxiety, ameliorating angina prectoris. Lysine acetylsalicylate has been used to treat pain and to detoxify the body after heroin use. Lysine clonixinate has been used for its analgesic properties for the treatment of migraine headaches and other painful conditions. However, limited clinical trials exist for these conditions.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.