U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1091 - 1100 of 1516 results

Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)



Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Estramustine is an antineoplastic agent indicated in the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate. Estramustine is a combination of estradiol with nitrogen mustard. In vivo, the nitrogen-mustard moiety becomes active and participates in alkylation of DNA or other cellular components. This causes DNA damage in rapidly dividing cancerous cells leading to cell death and ideally, tumor shrinkage. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. Used for the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate.
Estramustine is an antineoplastic agent indicated in the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate. Estramustine is a combination of estradiol with nitrogen mustard. In vivo, the nitrogen-mustard moiety becomes active and participates in alkylation of DNA or other cellular components. This causes DNA damage in rapidly dividing cancerous cells leading to cell death and ideally, tumor shrinkage. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. Used for the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate.
Estramustine is an antineoplastic agent indicated in the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate. Estramustine is a combination of estradiol with nitrogen mustard. In vivo, the nitrogen-mustard moiety becomes active and participates in alkylation of DNA or other cellular components. This causes DNA damage in rapidly dividing cancerous cells leading to cell death and ideally, tumor shrinkage. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. Used for the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate.
Estramustine is an antineoplastic agent indicated in the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate. Estramustine is a combination of estradiol with nitrogen mustard. In vivo, the nitrogen-mustard moiety becomes active and participates in alkylation of DNA or other cellular components. This causes DNA damage in rapidly dividing cancerous cells leading to cell death and ideally, tumor shrinkage. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. Used for the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate.
Dobutamine is a sympathomimetic drug used in the treatment of heart failure and cardiogenic shock. Dobutamine hydrochloride is a direct-acting inotropic agent whose primary activity results from stimulation of the ß-receptors of the heart while producing comparatively mild chronotropic, hypertensive, arrhythmogenic, and vasodilative effects. It does not cause the release of endogenous norepinephrine, as does dopamine. Dobutamine directly stimulates beta-1 receptors of the heart to increase myocardial contractility and stroke volume, resulting in increased cardiac output. Dobutamine Injection, USP is indicated when parenteral therapy is necessary for inotropic support in the short-term treatment of adults with cardiac decompensation due to depressed contractility resulting either from organic heart disease or from cardiac surgical procedures.
Disopyramide is an antiarrhythmic drug indicated for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia that are life-threatening. In man, Disopyramide at therapeutic plasma levels shortens the sinus node recovery time, lengthens the effective refractory period of the atrium, and has a minimal effect on the effective refractory period of the AV node. Little effect has been shown on AV-nodal and His-Purkinje conduction times or QRS duration. However, prolongation of conduction in accessory pathways occurs. Disopyramide is a Type 1A antiarrhythmic drug (ie, similar to procainamide and quinidine). It inhibits the fast sodium channels. In animal studies Disopyramide decreases the rate of diastolic depolarization (phase 4) in cells with augmented automaticity, decreases the upstroke velocity (phase 0) and increases the action potential duration of normal cardiac cells, decreases the disparity in refractoriness between infarcted and adjacent normally perfused myocardium, and has no effect on alpha- or beta-adrenergic receptors. It is used for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia, ventricular pre-excitation and cardiac dysrhythmias. It is a Class Ia antiarrhythmic drug.
Adenosine is a nucleoside that is composed of adenine and d-ribose, occurring in all cells of the body and play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard (adenosine injection) is used as an initial treatment for the termination of paroxysmal supraventricular tachycardia (PVST), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers. Adenocard does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following Adenocard administration. Adenosine slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore normal sinus rhythm. This effect may be mediated through the drug's activation of cell-surface A1 and A2 adenosine receptors. Adenocard is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenocard is not blocked by atropine. Adenosine also inhibits the slow inward calcium current and activation of adenylate cyclase in smooth muscle cells, thereby causing relaxation of vascular smooth muscle. By increasing blood flow in normal coronary arteries with little or no increase in stenotic arteries, adenosine produces a relative difference in thallous (thallium) chloride TI 201 uptake in myocardium supplied by normal verus stenotic coronary arteries.
Adenosine is a nucleoside that is composed of adenine and d-ribose, occurring in all cells of the body and play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard (adenosine injection) is used as an initial treatment for the termination of paroxysmal supraventricular tachycardia (PVST), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers. Adenocard does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following Adenocard administration. Adenosine slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore normal sinus rhythm. This effect may be mediated through the drug's activation of cell-surface A1 and A2 adenosine receptors. Adenocard is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenocard is not blocked by atropine. Adenosine also inhibits the slow inward calcium current and activation of adenylate cyclase in smooth muscle cells, thereby causing relaxation of vascular smooth muscle. By increasing blood flow in normal coronary arteries with little or no increase in stenotic arteries, adenosine produces a relative difference in thallous (thallium) chloride TI 201 uptake in myocardium supplied by normal verus stenotic coronary arteries.
Desonide is a topical glucocorticoid which was approved by FDA for the treatment of such conditions as eczema, psoriasis, atopic dermatitis, etc. The exact mechanism of drug action is unknown.

Showing 1091 - 1100 of 1516 results