{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for nonoxynol root_references_url in Reference URL (approximate match)
Status:
US Approved Rx
(2010)
Source:
ANDA090828
(2010)
Source URL:
First approved in 1973
Source:
NDA017376
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Status:
US Approved Rx
(2006)
Source:
ANDA065141
(2006)
Source URL:
First approved in 1973
Source:
ANCEF by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefazolin is a semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, cefazolin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. Cefazolin is used to treat bacterial infections of the skin, moderately severe bacterial infections involving the lung, bone, joint, stomach, blood, and urinary tract. It is clinically effective against infections caused by staphylococci and streptococci species of Gram positive bacteria. This drug also can be used for perioperative prophylaxis.
Status:
US Approved Rx
(2020)
Source:
ANDA213251
(2020)
Source URL:
First approved in 1973
Source:
ZAROXOLYN by I3 PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Metolazone is a thiazide-like diuretic marketed under the brand names Mykrox and Zaroxolyn. Zaroxolyn is indicated for the treatment of salt and water retention including:
• Edema accompanying congestive heart failure;
• Edema accompanying renal diseases including the
nephrotic syndrome and states of diminished renal
function.
Zaroxolyn is also indicated for the treatment of hypertension, alone or in combination with other antihypertensive drugs of a different class. Metolazone is a quinazoline diuretic, with properties generally similar to the thiazide diuretics. The actions of Metolazone result from interference with the renal tubular mechanism of electrolyte reabsorption. Metolazone acts primarily to inhibit sodium reabsorption at the cortical diluting site and to a lesser extent in the proximal convoluted tubule. Sodium and chloride ions are excreted in approximately equivalent amounts. The increased delivery of sodium to the distal tubular exchange site results in increased potassium excretion. Metolazone does not inhibit carbonic anhydrase. A proximal action of Metolazone has been shown in humans by increased excretion of phosphate and magnesium ions and by a markedly increased fractional excretion of sodium in patients with severely compromised glomerular filtration. This action has been demonstrated in animals by micropuncture studies.
Status:
US Approved Rx
(2010)
Source:
ANDA090836
(2010)
Source URL:
First approved in 1971
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephalexin is a semisynthetic cephalosporin antibiotic intended for
oral administration. In vitro tests demonstrate that the cephalosporins are bactericidal because of their inhibition of cell-wall synthesis. Cephalexin has been shown to be active against most strains of the following microorganisms both in vitro: Staphylococcus aureus (including penicillinase-producing strains), Streptococcus pneumoniae (penicillin-susceptible strains), Streptococcus pyogenes, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella (Branhamella) catarrhalis, Proteus mirabilis. Cephalexin is indicated for the treatment of the respiratory tract, skin and skin structure, bone and genitourinary tract infections when caused by susceptible strains of the designated microorganisms.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(2001)
Source:
ANDA075837
(2001)
Source URL:
First approved in 1970
Source:
FUDR by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Floxuridine is a pyrimidine analog that acts as an inhibitor of the S-phase of cell division. This selectively kills rapidly dividing cells. Floxuridine is an anti-metabolite. Anti-metabolites masquerade as pyramidine-like molecules which prevents normal pyrimidines from being incorporated into DNA during the S phase of the cell cycle. Flurouracil (the end-product of catabolism of floxuridine) blocks an enzyme which converts cytosine nucleosides into the deoxy derivative. In addition, DNA synthesis is further inhibited because fluoruracil blocks the incorporation of the thymdine nucleotide into the DNA strand. Floxuridine is used for palliative management of gastrointestinal adenocarcinoma metastatic to the liver, when given by continuous regional intra-arterial infusion in carefully selected patients who are considered incurable by surgery or other means. Also for the palliative management of liver cancer (usually administered by hepatic intra-arterial infusion).Floxuridine first gained FDA approval in December 1970 under the brand name FUDR. The drug was initially marketed by Roche, which also did a lot of the initial work on 5-fluorouracil. The National Cancer Institute was an early developer of the drug. Roche sold its FUDR product line in 2001 to F H Faulding, which became Mayne Pharma.
Status:
US Approved Rx
(1969)
Source:
NDA016785
(1969)
Source URL:
First approved in 1969
Source:
NDA016785
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Procarbazine is a chemotherapy medication used for the treatment of Hodgkin's lymphoma and brain cancers. For Hodgkin's it is often used together with mechlorethamine, vincristine, and prednisone while for brain cancers such as glioblastoma multiforme it is used with lomustine and vincristine. Procarbazine inhibits DNA, RNA, and protein synthesis by inhibiting transmethylation of methionine into transfer RNA; may also damage DNA directly through alkylation. Common side effect include low blood cell counts and vomiting. Other side effects include tiredness and depression.
Status:
US Approved Rx
(1968)
Source:
NDA016619
(1968)
Source URL:
First approved in 1968
Source:
NDA016619
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fentanyl is a potent agonist of mu opioid receptor. It is used to relieve severe pain, such as after surgery or during cancer treatment, and breakthrough pain (flare-ups of intense pain despite round-the-clock narcotic treatment). Fentanyl is an extremely powerful analgesic, 50–100-times more potent than morphine. Fentanyl harbors massive risk for addiction and abuse regardless of its prescription form. Fentanyl abuse is especially dangerous to those without a tolerance to opioids. The substance’s already elevated risk of overdose is multiplied when someone without a tolerance abuses it.
Status:
US Approved Rx
(2017)
Source:
ANDA207384
(2017)
Source URL:
First approved in 1968
Source:
NDA016267
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Deferoxamine (brand name Desferal) an iron chelator, is a drug for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Deferoxamine chelates iron by forming a stable complex that prevents the iron entering into further chemical reactions. However, drug may cause hypersensitivity reactions, systemic allergic reactions, and cardiovascular, hematologic and neurological adverse reactions. Serious adverse reactions include significant hypotension and marked body weight loss. Principally plasma enzymes metabolize deferoxamine, but the pathways have not yet been defined. The chelate is readily soluble in water and passes easily through the kidney, giving the urine a characteristic reddish color. Some is also excreted in the feces via the bile.
Status:
US Approved Rx
(1982)
Source:
NDA018667
(1982)
Source URL:
First approved in 1966
Source:
NDA016273
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.