U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1051 - 1060 of 1136 results

Status:
First approved in 1973
Source:
Sodium Pertechnetate by Centichem
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Molybdenum-99 (99Mo, half-life = 66 h) is a parent radionuclide of a diagnostic nuclear isotope. It decays in technetium-99 m (half-life = 6 h), which is used in over 30 million procedures per year around the world. Between 95 and 98 percent of Mo-99 is currently being produced using highly enriched uranium (HEU) targets. Other medical isotopes such as iodine-131 (I-131) and xenon-133 (Xe-133) are by-products of the Mo-99 production process and will be sufficiently available if Mo-99 is available.
Carbamazepine is an analgesic, anti-epileptic agent that is FDA approved for the treatment of epilepsy, trigeminal neuralgia. It appears to act by reducing polysynaptic responses and blocking the post-tetanic potentiation. It depresses thalamic potential and bulbar and polysynaptic reflexes, including the linguomandibular reflex in cats. Commonly reported side effects of carbamazepine include: dizziness, drowsiness, nausea, ataxia, and vomiting. Carbamazepine is a potent inducer of hepatic CYP1A2, 2B6, 2C9/19, and 3A4 and may reduce plasma concentrations of concomitant medications mainly metabolized by CYP1A2, 2B6, 2C9/19, and 3A4 through induction of their metabolism, like Boceprevir, Cyclophosphamide, Aripiprazole, Tacrolimus, Temsirolimus and others.
Doxycycline is an antibacterial drug synthetically derived from oxytetracycline and used to treat a wide variety of bacterial infections, including those that cause acne. Doxycycline is used for bacterial pneumonia, acne, chlamydia infections, early Lyme disease, cholera, and syphilis. It is also useful for the treatment of malaria when used with quinine and for the prevention of malaria. Common side effects include diarrhea, nausea, vomiting, a red rash, and an increased risk of a sunburn. If used during pregnancy or in young children may result in permanent problems with the teeth including changes in their color. Its use during breastfeeding is probably safe. Like other tetracycline antibiotics, Doxycycline is protein synthesis inhibitors, inhibiting the binding of aminoacyl-tRNA to the mRNA-ribosome complex by binding to the 30S ribosomal subunit in the mRNA translation complex.
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Status:
First marketed in 1931
Source:
Benzedrine Inhaler
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.
Phenylephrine is a powerful vasoconstrictor. It is used as a nasal decongestant and cardiotonic agent. Phenylephrine is a postsynaptic α1-receptor agonist with little effect on β-receptors of the heart. Parenteral administration of phenylephrine causes a rise in systolic and diastolic pressures, a slight decrease in cardiac output, and a considerable increase in peripheral resistance; most vascular beds are constricted, and renal, splanchnic, cutaneous, and limb blood flows are reduced while coronary blood flow is increased. Phenelephrine also causes pulmonary vessel constriction and subsequent increase in pulmonary arterial pressure. Vasoconstriction in the mucosa of the respiratory tract leads to decreased edema and increased drainage of sinus cavities. In general, α1-adrenergic receptors mediate contraction and hypertrophic growth of smooth muscle cells. α1-receptors are 7-transmembrane domain receptors coupled to G proteins, Gq/11. Three α1-receptor subtypes, which share approximately 75% homology in their transmembrane domains, have been identified: α1A (chromosome 8), α1B (chromosome 5), and α1D (chromosome 20). Phenylephrine appears to act similarly on all three receptor subtypes. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of the α1-receptor activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction. Phenylephrine produces its local and systemic actions by acting on α1-adrenergic receptors peripheral vascular smooth muscle. Stimulation of the α1-adrenergic receptors results in contraction arteriolar smooth muscle in the periphery. Phenylephrine decreases nasal congestion by acting on α1-adrenergic receptors in the arterioles of the nasal mucosa to produce constriction; this leads to decreased edema and increased drainage of the sinus cavities. Phenylephrine is mainly used to treat nasal congestion, but may also be useful in treating hypotension and shock, hypotension during spinal anaesthesia, prolongation of spinal anaesthesia, paroxysmal supraventricular tachycardia, symptomatic relief of external or internal hemorrhoids, and to increase blood pressure as an aid in the diagnosis of heart murmurs.
Status:
Investigational
Source:
NCT04711005: Phase 1 Interventional Completed Major Depressive Disorder
(2021)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
Investigational
Source:
INN:ticalopride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ticalopride is an isomer of the active metabolite of cisapride, which is marketed by Janssen for the treatment of nocturnal heartburn due to gastroesophageal reflux disease. Ticalopride acts through the stimulation of the serotonin 5-HT4 receptors which increases acetylcholine release in the enteric nervous system (specifically the myenteric plexus). This results in increased tone and amplitude of gastric contractions, relaxation of the pyloric sphincter and the duodenal bulb, and increased peristalsis of the duodenum and jejunum resulting in accelerated gastric emptying and intestinal transit. Phase II clinical trials of the Ticalopride are being suspended while investigators study reports of adverse events in patients with gastroesophageal reflux disease and diabetes.
Status:
Investigational
Source:
NCT00486434: Phase 3 Interventional Completed Osteoarthritis
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Showing 1051 - 1060 of 1136 results