U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1041 - 1050 of 1129 results

Sodium phenylbutyrate is a salt of an aromatic fatty acid. The compound is used to treat urea cycle disorders, because its metabolites offer an alternative pathway to the urea cycle to allow excretion of excess nitrogen. Sodium phenylbutyrate is also a histone deacetylase inhibitor and chemical chaperone, leading respectively to research into its use as an anti-cancer agent and in protein misfolding diseases such as cystic fibrosis. It is used as adjunctive therapy for the management of chronic urea cycle disorders due to deficiencies in carbamylphosphate (CPS), ornithine transcarbamylase (OTC), or argininosuccinic acid synthetase. It is indicated in all neonatal- onset efficiency presenting within the first 28 days of life. Also indicated in patients with late-onset, presenting after the first month of life with a history of hyperammonemic encephalopathy. Sodium phenylbutyrate is a pro-drug and is rapidly metabolized to phenylacetate. Phenylacetate is a metabolically active compound that conjugates with glutamine via acetylation to form phenylacetylglutamine. The kidneys then excrete Phenylacetylglutamine. PBA (phenylbutyric acid) is absorbed from the intestine and converted by way of β-oxidation to the active moiety, phenylacetic acid (PAA). PAA is conjugated with glutamine in the liver and kidney by way of N-acyl coenzyme A-l-glutamine N-acyltransferase to form phenylacetylglutamine (PAGN). Like urea, PAGN incorporates two waste nitrogens and is excreted in the urine. On a molar basis, it is comparable to urea (each containing two moles of nitrogen). Therefore, phenylacetylglutamine provides an alternate vehicle for waste nitrogen excretion.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Chenodiol is the non-proprietary name for chenodeoxycholic acid, a naturally occurring human bile acid. It is a bitter-tasting white powder consisting of crystalline and amorphous particles freely soluble in methanol, acetone and acetic acid and practically insoluble in water. Chenodiol suppresses hepatic synthesis of both cholesterol and cholic acid, gradually replacing the latter and its metabolite, deoxycholic acid in an expanded bile acid pool. These actions contribute to biliary cholesterol desaturation and gradual dissolution of radiolucent cholesterol gallstones in the presence of a gall-bladder visualized by oral cholecystography. Bile acids may also bind the the bile acid receptor (FXR) which regulates the synthesis and transport of bile acids. Chenodiol is indicated for patients with radiolucent stones in well-opacifying gallbladders, in whom selective surgery would be undertaken except for the presence of increased surgical risk due to systemic disease or age. The likelihood of successful dissolution is far greater if the stones are floatable or small. For patients with nonfloatable stones, dissolution is less likely and added weight should be given to the risk that more emergent surgery might result form a delay due to unsuccessful treatment.
Status:
First approved in 1976

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Loperamide is a commonly used over-the-counter (OTC) and prescription medicine that is approved to help control symptoms of diarrhea, including Travelers’ Diarrhea. The maximum approved daily dose for adults is 8 mg per day for OTC use and 16 mg per day for prescription use. It is sold under the OTC brand name Imodium A-D, as store brands, and as generics. In vitro and animal studies show that IMODIUM® (loperamide hydrochloride) acts by slowing intestinal motility and by affecting water and electrolyte movement through the bowel. Loperamide binds to the opiate receptor in the gut wall. Consequently, it inhibits the release of acetylcholine and prostaglandins, thereby reducing propulsive peristalsis, and increasing intestinal transit time. Loperamide increases the tone of the anal sphincter, thereby reducing incontinence and urgency. Loperamide is also indicated for reducing the volume of discharge from ileostomies. In man, Loperamide prolongs the transit time of the intestinal contents. It reduces the daily fecal volume, increases the viscosity and bulk density, and diminishes the loss of fluid and electrolytes. Tolerance to the antidiarrheal effect has not been observed. Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids. It works specifically by decreasing the activity of the myenteric plexus which decreases the motility of the circular and longitudinal smooth muscles of the intestinal wall. This increases the amount of time substances stay in the intestine, allowing for more water to be absorbed out of the fecal matter. Loperamide also decreases colonic mass movements and suppresses the gastrocolic reflex.
Status:
First approved in 1973
Source:
Sodium Pertechnetate by Centichem
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Molybdenum-99 (99Mo, half-life = 66 h) is a parent radionuclide of a diagnostic nuclear isotope. It decays in technetium-99 m (half-life = 6 h), which is used in over 30 million procedures per year around the world. Between 95 and 98 percent of Mo-99 is currently being produced using highly enriched uranium (HEU) targets. Other medical isotopes such as iodine-131 (I-131) and xenon-133 (Xe-133) are by-products of the Mo-99 production process and will be sufficiently available if Mo-99 is available.
Carbamazepine is an analgesic, anti-epileptic agent that is FDA approved for the treatment of epilepsy, trigeminal neuralgia. It appears to act by reducing polysynaptic responses and blocking the post-tetanic potentiation. It depresses thalamic potential and bulbar and polysynaptic reflexes, including the linguomandibular reflex in cats. Commonly reported side effects of carbamazepine include: dizziness, drowsiness, nausea, ataxia, and vomiting. Carbamazepine is a potent inducer of hepatic CYP1A2, 2B6, 2C9/19, and 3A4 and may reduce plasma concentrations of concomitant medications mainly metabolized by CYP1A2, 2B6, 2C9/19, and 3A4 through induction of their metabolism, like Boceprevir, Cyclophosphamide, Aripiprazole, Tacrolimus, Temsirolimus and others.
Doxycycline is an antibacterial drug synthetically derived from oxytetracycline and used to treat a wide variety of bacterial infections, including those that cause acne. Doxycycline is used for bacterial pneumonia, acne, chlamydia infections, early Lyme disease, cholera, and syphilis. It is also useful for the treatment of malaria when used with quinine and for the prevention of malaria. Common side effects include diarrhea, nausea, vomiting, a red rash, and an increased risk of a sunburn. If used during pregnancy or in young children may result in permanent problems with the teeth including changes in their color. Its use during breastfeeding is probably safe. Like other tetracycline antibiotics, Doxycycline is protein synthesis inhibitors, inhibiting the binding of aminoacyl-tRNA to the mRNA-ribosome complex by binding to the 30S ribosomal subunit in the mRNA translation complex.
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Status:
First marketed in 1931
Source:
Benzedrine Inhaler
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.
Phenylephrine is a powerful vasoconstrictor. It is used as a nasal decongestant and cardiotonic agent. Phenylephrine is a postsynaptic α1-receptor agonist with little effect on β-receptors of the heart. Parenteral administration of phenylephrine causes a rise in systolic and diastolic pressures, a slight decrease in cardiac output, and a considerable increase in peripheral resistance; most vascular beds are constricted, and renal, splanchnic, cutaneous, and limb blood flows are reduced while coronary blood flow is increased. Phenelephrine also causes pulmonary vessel constriction and subsequent increase in pulmonary arterial pressure. Vasoconstriction in the mucosa of the respiratory tract leads to decreased edema and increased drainage of sinus cavities. In general, α1-adrenergic receptors mediate contraction and hypertrophic growth of smooth muscle cells. α1-receptors are 7-transmembrane domain receptors coupled to G proteins, Gq/11. Three α1-receptor subtypes, which share approximately 75% homology in their transmembrane domains, have been identified: α1A (chromosome 8), α1B (chromosome 5), and α1D (chromosome 20). Phenylephrine appears to act similarly on all three receptor subtypes. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of the α1-receptor activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction. Phenylephrine produces its local and systemic actions by acting on α1-adrenergic receptors peripheral vascular smooth muscle. Stimulation of the α1-adrenergic receptors results in contraction arteriolar smooth muscle in the periphery. Phenylephrine decreases nasal congestion by acting on α1-adrenergic receptors in the arterioles of the nasal mucosa to produce constriction; this leads to decreased edema and increased drainage of the sinus cavities. Phenylephrine is mainly used to treat nasal congestion, but may also be useful in treating hypotension and shock, hypotension during spinal anaesthesia, prolongation of spinal anaesthesia, paroxysmal supraventricular tachycardia, symptomatic relief of external or internal hemorrhoids, and to increase blood pressure as an aid in the diagnosis of heart murmurs.

Showing 1041 - 1050 of 1129 results