{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
ARCAPTA NEOHALER by NOVARTIS
(2011)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
TRIQUIN QUINACRINE HYDROCHLORIDE by WINTHROP
(1961)
Source URL:
First approved in 1938
Class (Stereo):
CHEMICAL (RACEMIC)
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Status:
US Previously Marketed
Source:
TRIQUIN QUINACRINE HYDROCHLORIDE by WINTHROP
(1961)
Source URL:
First approved in 1938
Class (Stereo):
CHEMICAL (RACEMIC)
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acotiamide (Acofide(®)), an oral first-in-class prokinetic drug, is under global development by Zeria Pharmaceutical Co. Ltd and Astellas Pharma Inc. for the treatment of patients with functional dyspepsia. The drug modulates upper gastrointestinal motility to alleviate abdominal symptoms resulting from hypomotility and delayed gastric emptying. It exerts its activity in the stomach via muscarinic receptor inhibition, resulting in enhanced acetylcholine release and inhibition of acetylcholinesterase activity. Acofide® is launched in Japan for treating functional dyspepsia.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acotiamide (Acofide(®)), an oral first-in-class prokinetic drug, is under global development by Zeria Pharmaceutical Co. Ltd and Astellas Pharma Inc. for the treatment of patients with functional dyspepsia. The drug modulates upper gastrointestinal motility to alleviate abdominal symptoms resulting from hypomotility and delayed gastric emptying. It exerts its activity in the stomach via muscarinic receptor inhibition, resulting in enhanced acetylcholine release and inhibition of acetylcholinesterase activity. Acofide® is launched in Japan for treating functional dyspepsia.
Status:
Possibly Marketed Outside US
Source:
MUCOSOLVAN by Boehringer Ingelheim
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ambroxol, a substituted benzylamine, is an active
metabolite of bromhexine, which is itself
a synthetic derivative of vasicine, the active principle extracted from the plant species Adhatoda vasica. Ambroxol is an expectorant exerting mucokinetic properties, mucociliary activity, stimulation of surfactant production, anti-inflammatory and antioxidative actions and the local anaesthetic effect. Ambroxol was discovered at and has been manufactured by Dr. Karl Thomae GmbH, a division of Boehringer Ingelheim. The ambroxol patent is expired and the drug is available as a generic product from many different companies. Ambroxol was originally developed by Boehringer Ingelheim as a OTC therapy for respiratory disorders related to excessive mucus. Ambroxol's indication is secretolytic therapy in acute and chronic bronchopulmonary diseases associated with abnormal mucus secretion and impaired mucus transport. Boehringer Ingelheim markets the product under various brand names such as Mucosolvan® and Lasolvan®. Ambroxol was identified and found to be a pH-dependent, mixed-type inhibitor of glucocerebrosidase (GCase). Its inhibitory activity was maximal at neutral pH, found in the endoplasmic reticulum, and undetectable at the acidic pH of lysosomes. The pH dependence of Ambroxol to bind and stabilize the enzyme was confirmed. Ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants. This profile of Ambroxol would allow to bind and stabilize GCase in the endoplasmic reticulum (thus preventing its degradation within endoplasmic reticulum), but without affecting GCase in the lysosomes (thus allowing it to degrade glucosylceramide). Indeed, studies showed that Ambroxol treatment significantly increased N370S and F213I mutant GCase activity and protein levels in fibroblasts originally obtained from Gaucher patients. Gaucher's disease is caused by the deficiency of glucocerebrosidase; ambroxol is a chaperone that acts by binding to and stabilising glucocerebrosidase. Zywie (formerly ExSAR Corporation) and Belrose Pharma are developing ambroxol hydrochloride (BEL 0218) for the treatment of type III Gaucher's disease.
.
Status:
Possibly Marketed Outside US
Source:
MUCOSOLVAN by Boehringer Ingelheim
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ambroxol, a substituted benzylamine, is an active
metabolite of bromhexine, which is itself
a synthetic derivative of vasicine, the active principle extracted from the plant species Adhatoda vasica. Ambroxol is an expectorant exerting mucokinetic properties, mucociliary activity, stimulation of surfactant production, anti-inflammatory and antioxidative actions and the local anaesthetic effect. Ambroxol was discovered at and has been manufactured by Dr. Karl Thomae GmbH, a division of Boehringer Ingelheim. The ambroxol patent is expired and the drug is available as a generic product from many different companies. Ambroxol was originally developed by Boehringer Ingelheim as a OTC therapy for respiratory disorders related to excessive mucus. Ambroxol's indication is secretolytic therapy in acute and chronic bronchopulmonary diseases associated with abnormal mucus secretion and impaired mucus transport. Boehringer Ingelheim markets the product under various brand names such as Mucosolvan® and Lasolvan®. Ambroxol was identified and found to be a pH-dependent, mixed-type inhibitor of glucocerebrosidase (GCase). Its inhibitory activity was maximal at neutral pH, found in the endoplasmic reticulum, and undetectable at the acidic pH of lysosomes. The pH dependence of Ambroxol to bind and stabilize the enzyme was confirmed. Ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants. This profile of Ambroxol would allow to bind and stabilize GCase in the endoplasmic reticulum (thus preventing its degradation within endoplasmic reticulum), but without affecting GCase in the lysosomes (thus allowing it to degrade glucosylceramide). Indeed, studies showed that Ambroxol treatment significantly increased N370S and F213I mutant GCase activity and protein levels in fibroblasts originally obtained from Gaucher patients. Gaucher's disease is caused by the deficiency of glucocerebrosidase; ambroxol is a chaperone that acts by binding to and stabilising glucocerebrosidase. Zywie (formerly ExSAR Corporation) and Belrose Pharma are developing ambroxol hydrochloride (BEL 0218) for the treatment of type III Gaucher's disease.
.