U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 664 results

Tedizolid (also known as TR-700, DA-7157) as is an active compound, which is produced by plasma or intestinal phosphatases, after administration of the drug, tedizolid phosphate either orally or intravenously. The mechanism of action of tedizolid occurs through inhibition of bacterial protein synthesis by binding to the 23S ribosomal RNA of the 50S subunit, thereby preventing the formation of the 70S initiation complex and inhibiting protein synthesis.
Fosnetupitant is a prodrug form of netupitant. Netupitant is a selective antagonist of human substance P/neurokinin 1 (NK-1) receptors. Upon intravenous administration, fosnetupitant is converted by phosphatases to its active form. It competitively binds to and blocks the activity of NK-1 receptors in the central nervous system, by inhibiting binding of substance P (SP) to NK-1 receptors. This prevents delayed emesis, which is associated with SP secretion. AKYNZEO® is a combination of palonosetron, a serotonin-3 receptor antagonist, and netupitant (capsules for oral use) or fosnetupitant (injections for intravenous use). AKYNZEO® for injection is indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy.

Class (Stereo):
CHEMICAL (ACHIRAL)


Pirfenidone is a synthetic antifibrotic agent indicated for the treatment of idiopathic pulmonary fibrosis as Esbriet. Pirfenidone inhibits fibroblast, epidermal, platelet-derived, and transforming beta-1 growth factors. It also inhibits DNA synthesis and the production of mRNA for collagen types I and III, resulting in a reduction in radiation-induced fibrosis. Pirfenidone has demonstrated activity in multiple fibrotic conditions however the exact mechanism of action of pirfenidone in the treatment of IPF has not been established.
Vortioxetine is an antidepressant for the treatment of major depressive disorder. Vortioxetine’s mechanism of action is not fully understood. Vortioxetine binds with high affinity to the serotonin transporter and its antidepressant actions are believed to be secondary to enhancing serotonin in the central nervous system through inhibition of reuptake. Vortioxetine also displays binding affinities to other serotonin (5-HT) receptors, including 5-HT3, 5-HT1A, and 5-HT7. Due to multimodal neurotransmitter enhancer profile, it has been suggested that it might need lesser receptor occupancy rate for clinical trials than other selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors. Since vortioxetine is an agonist and antagonist of multiple serotonin receptors, potential interactions may occur with other medications that alter the serotonergic pathways. There is an increased risk of serotonin syndrome when vortioxetine is used in combination with other serotonergic agents.
Ibrutinib is an orally bioavailable Bruton's tyrosine kinase (BTK) inhibitor indicated for the treatment of mantle cell lymphoma (MCL) patients that previously received at least one therapy. The drug was jointly developed by Janssen Biotech and Pharmacyclics. Ibrutinib selectively binds to Cys-481 residue in the allosteric inhibitory segment of BTK (TK/SH1 domain), and irreversibly blocks its enzymatic activity thus preventing B-cell activation and signaling, totally blocking the B-cell receptor and cytokine receptor pathways. This leads to an inhibition of the growth of malignant B cells that overexpress BTK. Apart from mantle cell lymphoma Ibrutinib is approved for the treatment of chronic lymphocytic leukemia and Waldenstrom Macroglobulinemia.
Tofacitinib is an orally available inhibitor of Janus kinases (JAK), with immunomodulatory and anti-inflammatory activities. Upon administration, tofacitinib binds to JAK and prevents the activation of the JAK-signal transducers and activators of transcription (STAT) signaling pathway. This may decrease the production of pro-inflammatory cytokines, such as interleukin (IL)-6, -7, -15, -21, interferon-alpha and -beta, and may prevent both an inflammatory response and the inflammation-induced damage caused by certain immunological diseases. JAK kinases are intracellular enzymes involved in signaling pathways affecting hematopoiesis, immunity and inflammation. Tofacitinib was discovered and developed by the National Institutes of Health and Pfizer. Besides rheumatoid arthritis, tofacitinib has also been studied in clinical trials for the prevention of organ transplant rejection, and the treatment of psoriasis and ulcerative colitis. Patients treated with tofacitinib (XELJANZ) are at increased risk for developing serious infections that may lead to hospitalization or death and adverse reactions. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.
Bosutinib (trade name Bosulif) originally synthesized by Wyeth, it is being developed by Pfizer. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy. Bosutinib is a synthetic quinolone derivative and dual kinase inhibitor that targets both Abl and Src kinases with potential antineoplastic activity. Unlike imatinib, bosutinib inhibits the autophosphorylation of both Abl and Src kinases, resulting in inhibition of cell growth and apoptosis. Because of the dual mechanism of action, this agent may have activity in resistant CML disease, other myeloid malignancies and solid tumors. Abl kinase is upregulated in the presence of the abnormal Bcr-abl fusion protein which is commonly associated with chronic myeloid leukemia (CML). Overexpression of specific Src kinases is also associated with the imatinib-resistant CML phenotype.
Lomitapide (INN, marketed as Juxtapid in the US and as Lojuxta in the EU) is a drug for the treatment of familial hypercholesterolemia, developed by Aegerion Pharmaceuticals. It has been tested in clinical trials as single treatment and in combinations with atorvastatin, ezetimibe and fenofibrate. The US Food and Drug Administration (FDA) approved lomitapide on 21 December 2012, as an orphan drug to reduce LDL cholesterol, total cholesterol, apolipoprotein B, and non-high-density lipoprotein (non-HDL) cholesterol in patients with homozygous familial hypercholesterolemia (HoFH). On 31 May 2013 the European Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion with a unanimous vote recommending a marketing authorization for lomitapide. On 31 July 2013 the European Commission approved lomitapide as an adjunct to a low-fat diet and other lipid-lowering medicinal products with or without low density lipoprotein (LDL) apheresis in adult patients with HoFH. UXTAPID directly binds and inhibits microsomal triglyceride transfer protein (MTP), which resides in the lumen of the endoplasmic reticulum, thereby preventing the assembly of apo B containing lipoproteins in enterocytes and hepatocytes. This inhibits the synthesis of chylomicrons and VLDL. The inhibition of the synthesis of VLDL leads to reduced levels of plasma LDL-C.

Class (Stereo):
CHEMICAL (ACHIRAL)



Enzalutamide (brand name Xtandi) is an orally bioavailable, organic, non-steroidal small molecule targeting the androgen receptor (AR) with potential antineoplastic activity. It was developed at UCLA and marketed by the pharmaceutical company Medivation for the treatment of metastatic castration-resistant prostate cancer. Through a mechanism that is reported to be different from other approved AR antagonists, enzalutamide inhibits the activity of prostate cancer cell ARs, which may result in a reduction in prostate cancer cell proliferation and, correspondingly, a reduction in the serum prostate specific antigen (PSA) level. AR over-expression in prostate cancer represents a key mechanism associated with prostate cancer hormone resistance.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Perampanel (trade name Fycompa) is an antiepileptic drug developed by Eisai Co. that acts as a selective non-competitive antagonist of AMPA receptors, the major subtype of ionotropic glutamate receptors. Although the mechanism of action through which perampanel exerts its antiepileptic effect has not been fully elucidated, this agent antagonizes the AMPA subtype of the excitatory glutamate receptor found on postsynaptic neurons in the central nervous system (CNS). This antagonistic action prevents AMPA receptor activation by glutamate and results in the inhibition of neuronal excitation, repetitive neuronal firing, and the stabilization of hyper-excited neural membranes. Glutamate, the primary excitatory neurotransmitter in the CNS, plays an important role in various neurological disorders caused by neuronal hyperexcitation. The drug is currently approved, for the control of partial-onset seizures, in those of both sexes who suffer from epilepsy and who are 12 years of age and older, by the Food and Drug Administration. Perampanel is also approved for the treatment of primary generalized tonic-clonic seizures in patients with epilepsy aged 12 years and older. It is designated as a Schedule III controlled substance by the Drug Enforcement Administration. Perampanel has been studied in other clinical indications including Parkinson's disease.