{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
PROTHIPENDYL is a neuroleptic azaphenothiazine used to treat anxiety and agitation in psychotic syndromes. It also shows strong antihistamine and anti-emetic actions.
Status:
US Previously Marketed
Source:
ALLECUR 40MG by ROERIG
(1961)
Source URL:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clemizole is a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Clemizole is a novel inhibitor of TRPC5 channels. Clemizole is an H1 antagonist. Clemizole, an antihistamine drug that was once widely used for treatment of allergic disease, was recently discovered to be a potent inhibitor (IC50, 24 nM) of the interaction between an HCV protein (NS4B) and HCV RNA. Although clemizole was widely used during the 1950s and 1960s, this was before contemporary regulatory requirements were established for new drug development, and there is very minimal information about its pharmacokinetics and metabolism.
Status:
US Previously Marketed
Source:
AKINETON by ABBVIE
(1959)
Source URL:
First approved in 1959
Source:
AKINETON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Biperiden, sold under the brandname Akineton was used as an adjunct in the therapy of all forms of parkinsonism (postencephalitic, arteriosclerotic and idiopathic). Was also useful in the control of extrapyramidal disorders due to central nervous system drugs such as phenothiazines and other groups of psychotropics. Biperiden is a weak peripheral anticholinergic agent. It has, therefore, some antisecretory, antispasmodic and mydriatic effects. In addition, biperiden possesses nicotinolytic activity. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as biperiden is considered to relate to competitive antagonism of acetylcholine at cholinergic receptors in the corpus striatum, which then restores the balance. Atropine-like side effects such as dry mouth; blurred vision; drowsiness; euphoria or disorientation; urinary retention; postural hypotension; constipation; agitation; disturbed behavior may been seen. Only limited pharmacokinetic studies of biperiden in humans are available.
Status:
US Previously Marketed
Source:
AKINETON by ABBVIE
(1959)
Source URL:
First approved in 1959
Source:
AKINETON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Biperiden, sold under the brandname Akineton was used as an adjunct in the therapy of all forms of parkinsonism (postencephalitic, arteriosclerotic and idiopathic). Was also useful in the control of extrapyramidal disorders due to central nervous system drugs such as phenothiazines and other groups of psychotropics. Biperiden is a weak peripheral anticholinergic agent. It has, therefore, some antisecretory, antispasmodic and mydriatic effects. In addition, biperiden possesses nicotinolytic activity. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as biperiden is considered to relate to competitive antagonism of acetylcholine at cholinergic receptors in the corpus striatum, which then restores the balance. Atropine-like side effects such as dry mouth; blurred vision; drowsiness; euphoria or disorientation; urinary retention; postural hypotension; constipation; agitation; disturbed behavior may been seen. Only limited pharmacokinetic studies of biperiden in humans are available.
Status:
US Previously Marketed
Source:
SINTROM 4MG by GEIGY
(1961)
Source URL:
First approved in 1957
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Acenocoumarol is mono-coumarin derivative with racemic mixture of R (+) and S (-) enantiomers. Acenocoumarol is structurally similar to vitamin K and is competitively able to inhibit the enzyme vitamin K-epoxide reductase. It exerts anticoagulant action by preventing the regeneration of reduced vitamin K by interfering with action of vitamin K epoxide reductase. Acenocoumarol is prescribed as the anticoagulant in various thromboembolic disorders.
Status:
US Previously Marketed
Source:
SPARINE by WYETH AYERST
(1957)
Source URL:
First approved in 1956
Source:
SPARINE by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Promazine (Sparine) is a phenothiazine neuroleptic used for short-term management of moderate to severe psychomotor agitation and treatment of agitation and restlessness in the elderly. Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazine's antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tuberoinfundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. Promazine is not approved for human use in the United States. It is available in the US for veterinary use under the names Promazine and Tranquazine.
Status:
US Previously Marketed
Source:
SPARINE by WYETH AYERST
(1957)
Source URL:
First approved in 1956
Source:
SPARINE by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Promazine (Sparine) is a phenothiazine neuroleptic used for short-term management of moderate to severe psychomotor agitation and treatment of agitation and restlessness in the elderly. Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazine's antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tuberoinfundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. Promazine is not approved for human use in the United States. It is available in the US for veterinary use under the names Promazine and Tranquazine.
Status:
US Previously Marketed
Source:
SPARINE by WYETH AYERST
(1957)
Source URL:
First approved in 1956
Source:
SPARINE by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Promazine (Sparine) is a phenothiazine neuroleptic used for short-term management of moderate to severe psychomotor agitation and treatment of agitation and restlessness in the elderly. Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazine's antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tuberoinfundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. Promazine is not approved for human use in the United States. It is available in the US for veterinary use under the names Promazine and Tranquazine.
Status:
US Previously Marketed
Source:
Hydergine by Sandoz
(1951)
Source URL:
First approved in 1951
Source:
Hydergine by Sandoz
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dihydro-alpha-ergocryptine is an ergot alkaloid that has an agonist activity on D2 dopaminergic receptors and a partial agonist activity on D1 receptors. It also demonstrated antagonistic activity towards alpha-adrenergic receptors. The drug was approved by FDA in combination with other alkaloids (dihydroergocornine, dihydroergocristine and dihydro-beta-ergocryptine mesylate salts) under the name Hydergine for the treatment of dimentia and cerebrovascular insufficiency.
Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.