{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2010)
Source:
ANDA200529
(2010)
Source URL:
First approved in 1965
Source:
INDOCIN by ZYLA LIFE SCIENCES
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Indometacin (INN and BAN) or indomethacin (AAN, USAN, and former BAN) is a nonsteroidal anti-inflammatory drug (NSAID) commonly used as a prescription medication to reduce fever, pain, stiffness, and swelling from inflammation. Indomethacin has analgesic, anti-inflammatory, and antipyretic properties. The mechanism of action of Indometacin, like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Indomethacin is a potent inhibitor of prostaglandin synthesis in vitro. Indomethacin concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because indomethacin is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues. Indometacin is indicated for: Moderate to severe rheumatoid arthritis including acute flares of chronic disease, Moderate to severe ankylosing spondylitis, Moderate to severe osteoarthritis, Acute painful shoulder (bursitis and/or tendinitis), Acute gouty arthritis. In general, adverse effects seen with indomethacin are similar to all other NSAIDs. For instance, indometacin inhibits both cyclooxygenase-1 and cyclooxygenase-2, it inhibits the production of prostaglandins in the stomach and intestines, which maintain the mucous lining of the gastrointestinal tract. Indometacin, therefore, like other non-selective COX inhibitors can cause peptic ulcers. These ulcers can result in serious bleeding and/or perforation requiring hospitalization of the patient. To reduce the possibility of peptic ulcers, indomethacin should be prescribed at the lowest dosage needed to achieve a therapeutic effect, usually between 50–200 mg/day. It should always be taken with food. Nearly all patients benefit from an ulcer protective drug (e.g. highly dosed antacids, ranitidine 150 mg at bedtime, or omeprazole 20 mg at bedtime). Other common gastrointestinal complaints, including dyspepsia, heartburn and mild diarrhea are less serious and rarely require discontinuation of indomethacin.
Status:
US Approved Rx
(1988)
Source:
ANDA071813
(1988)
Source URL:
First approved in 1965
Source:
SERAX by ALPHARMA US PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Oxazepam is the first of a chemical series of compounds, the 3-hydroxybenzodiazepinones. A therapeutic agent providing versatility and flexibility in control of common emotional disturbances, this product exerts prompt action in a wide variety of disorders associated with anxiety, tension, agitation and irritability, and anxiety associated with depression. Oxazepam has distinguished itself clinically from other benzodiazepines by virtue of its excellent tolerance. Because of its excellent tolerance, dosage is very flexible, and it is, therefore, possible to utilize oxazepam in a wide spectrum of anxiety-related disorders including the psychoses. Oxazepam has been administered to humans by the oral route only. Usual ranges for kinetic parameters are: elimination half-life, 5 to 15 hours; volume of distribution, 0.6 to 2.0 L/kg; clearance, 0.9 to 2.0 ml/min/kg. Age and liver disease have a minimal influence on oxazepam kinetics, but renal disease is associated with a prolonged half-life and increased volume of distribution.
Status:
US Approved Rx
(1989)
Source:
ANDA070916
(1989)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Nalbuphine is a semi-synthetic opioid agonist-antagonist used commercially as an analgesic under a variety of trade names, including Nubain and Manfine. Nalbuphine is an agonist at kappa opioid receptors and an antagonist at mu opioid receptors. Nalbuphine analgesic potency is essentially equivalent to that of morphine on a milligram basis up to a dosage of approximately 30 mg. The opioid antagonist activity of Nalbuphine is one-fourth as potent as nalorphine and 10 times that of pentazocine. Nalbuphine is indicated for the management of pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Nalbuphine can also be used as a supplement to balanced anesthesia, for preoperative and postoperative analgesia, and for obstetrical analgesia during labor and delivery. The onset of action of Nalbuphine occurs within 2 to 3 minutes after intravenous administration, and in less than 15 minutes following subcutaneous or intramuscular injection. The plasma half-life of nalbuphine is 5 hours, and in clinical studies, the duration of analgesic activity has been reported to range from 3 to 6 hours. Like pure µ-opioids, the mixed agonist-antagonist opioid class of drugs can cause side effects with initial administration of the drug but which lessen over time (“tolerance”). This is particularly true for the side effects of nausea, sedation and cognitive symptoms. These side effects can in many instances be ameliorated or avoided at the time of drug initiation by titrating the drug from a tolerable starting dose up to the desired therapeutic dose. An important difference between nalbuphine and the pure mu-opioid analgesic drugs is the “ceiling effect” on respiration. Respiratory depression is a potentially fatal side effect from the use of pure mu opioids. Nalbuphine has limited ability to depress respiratory function.
Status:
US Approved Rx
(2008)
Source:
ANDA078597
(2008)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ACHIRAL)
Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches.
The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.
Status:
US Approved Rx
(2008)
Source:
ANDA078597
(2008)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ACHIRAL)
Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches.
The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.