U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 841 - 850 of 132111 results

Nicotine is a natural alkaloid obtained from the dried leaves and stems of the nightshade family of pants, such as Nicotiana tabacum and Nicotiana rustica, where it occurs in concentrations of 0.5-8%. Cigarette tobacco varies in its nicotine content, but common blends contain 15-25 mg per cigarette, with a current trend towards lower levels. Nicotine is highly addictive substance, it exhibits a stimulant effect when adsorbed at 2 mg. Administration of higher doses could be harmful. Action of nicotine is mediated by nicotinic cholinergic receptors. Nicotine binds to the interface between two subunits of the receptors, opens the channel and allows the entry of sodium or calcium. The principal mediator of nicotine dependence is α4β2 nicotine receptor.
Glyburide, a second-generation sulfonylurea antidiabetic agent, lowers blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may be involved in the mechanism of action of oral sulfonyl-urea hypoglycemic drugs. The combination of glibenclamide and metformin may have a synergistic effect, since both agents act to improve glucose tolerance by different but complementary mechanisms. In addition to its blood glucose lowering actions, glyburide produces a mild diuresis by enhancement of renal free water clearance. Glyburide is twice as potent as the related second-generation agent glipizide. Sulfonylureas such as glyburide bind to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. Glyburide is indicated as an adjunct to diet to lower the blood glucose in patients with NIDDM whose hyperglycemia cannot be satisfactorily controlled by diet alone. Glyburide is available as a generic, is manufactured by many pharmaceutical companies and is sold in doses of 1.25, 2.5 and 5 mg under many brand names including Gliben-J, Daonil, Diabeta, Euglucon, Gilemal, Glidanil, Glybovin, Glynase, Maninil, Micronase and Semi-Daonil. It is also available in a fixed-dose combination drug with metformin that is sold under various trade names, e.g. Bagomet Plus, Benimet, Glibomet, Gluconorm, Glucored, Glucovance, Metglib and many others.
Status:
First approved in 1984
Source:
NU-DERM SUNFADER Skin Lightener with Sunscreen (SPF 15) PABA FREE by OMP, INC.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Hydroquinone, aka benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. Its chemical structure features two hydroxyl groups bonded to a benzene ring in a para position. It is a white granular solid. Substituted derivatives of this parent compound are also referred to as hydroquinones. The name "hydroquinone" was coined by Friedrich Wöhler in 1843. In human medicine, hydroquinone is used as a topical application in skin whitening to reduce the color of skin. It does not have the same predisposition to cause dermatitis as metol does. In 2006, the United States Food and Drug Administration revoked its previous approval of hydroquinone and proposed a ban on all over-the-counter preparations. The FDA stated that hydroquinone cannot be ruled out as a potential carcinogen. This conclusion was reached based on the extent of absorption in humans and the incidence of neoplasms in rats in several studies where adult rats were found to have increased rates of tumours, including thyroid follicular cell hyperplasias, anisokaryosis (variation in nuclei sizes), mononuclear cell leukemia, hepatocellular adenomas and renal tubule cell adenomas. One of the components in TRI-LUMA Cream, hydroquinone, is a depigmenting agent, and may interrupt one or more steps in the tyrosine-tyrosinase pathway of melanin synthesis. However, the mechanism of action of the active ingredients in TRI-LUMA Cream in the treatment of melasma is unknown.
Clavulanic acid is produced by the fermentation of Streptomyces clavuligerus. It is a β-lactam structurally related to the penicillins and possesses the ability to inactivate a wide variety of β-lactamases by blocking the active sites of these enzymes. Clavulanic acid is particularly active against the clinically important plasmid-mediated β-lactamases frequently responsible for transferred drug resistance to penicillins and cephalosporins. Clavulanic acid is used in conjunction with amoxicillin for the treatment of bronchitis and urinary tract, skin, and soft tissue infections caused by beta-lactamase producing organisms. Clavulanic acid competitively and irreversibly inhibits a wide variety of beta-lactamases, commonly found in microorganisms resistant to penicillins and cephalosporins. Binding and irreversibly inhibiting the beta-lactamase results in a restauration of the antimicrobial activity of beta-lactam antibiotics against lactamase-secreting-resistant bacteria. By inactivating beta-lactamase (the bacterial resistance protein), the accompanying penicillin/cephalosporin drugs may be made more potent as well.

Class (Stereo):
CHEMICAL (ACHIRAL)



Acetohydroxamic acid (also known as AHA or by the trade name Lithostat) is a synthetic drug derived from hydroxylamine and ethyl acetate, is similar in structure to urea. In the urine, it acts as an antagonist of the bacterial enzyme urease. Acetohydroxamic acid is used to lower the level of ammonia in the urine, which may help with some types of urinary infections. Acetohydroxamic Acid has no direct antimicrobial action and does not acidify urine directly. It is used, in addition to antibiotics or medical procedures, to treat chronic urea-splitting urinary infections. In 1983 the US Food and Drug Administration approved acetohydroxamic acid (AHA) as an orphan drug for "prevention of so-called struvite stones" under the newly enacted Orphan Drug Act of 1983.
Status:

Class (Stereo):
CHEMICAL (RACEMIC)



Tioconazole is an antifungal medication of the imidazole class used to treat infections caused by a fungus or yeast. Tioconazole is a broad-spectrum imidazole antifungal agent that inhibits the growth of human pathogenic yeasts. Tioconazole exhibits fungicidal activity in vitro against Candida albicans, other species of the genus Candida, and against Torulopsis glabrata. Tioconazole prevents the growth and function of some fungal organisms by interfering with the production of substances needed to preserve the cell membrane. This drug is effective only for infections caused by fungal organisms. Tioconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. Tioconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms and the uptake of purine, impair triglyceride and/or phospholipid biosynthesis, and inhibit the movement of calcium and potassium ions across the cell membrane by blocking the ion transport pathway known as the Gardos channel. Side effects (for the women's formulas) may include temporary burning/irritation of the vaginal area, moderate drowsiness, headache similar to a sinus headache, hives, and upper respiratory infection.
Indapamide is an antihypertensive and a diuretic. It contains both a polar sulfamoyl chlorobenzamide moiety and a lipid- soluble methylindoline moiety. Indapamide blocks the slow component of delayed rectifier potassium current (IKs) without altering the rapid component (IKr) or the inward rectifier current. Specifically it blocks or antagonizes the action the proteins KCNQ1 and KCNE1. Indapamide is also thought to stimulate the synthesis of the vasodilatory hypotensive prostaglandin PGE2. Indapamide is used for the treatment of hypertension, alone or in combination with other antihypertensive drugs, as well as for the treatment of salt and fluid retention associated with congestive heart failure or edema from pregnancy (appropriate only in the management of edema of pathologic origin during pregnancy when clearly needed). Also used for the management of edema as a result of various causes.
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Cyclosporins are cyclic polypeptide macrolides that were originally derived from the soil fungus Tolypocladium inflatum. Cyclosporine (also known as cyclosporine A) was discovered by Sandoz and developed for the tretment of immune disorders. The drug was approved by FDA for such diseases as Rheumatoid Arthritis, Psoriasis (Neoral), Keratoconjunctivitis sicca (Restasis) and prevention of transplant rejections (Neoral and Sandimmune). Cyclosporine’s primary immunosuppressive mechanism of action is inhibition of T-lymphocyte function. Upon administration cyclosporine binds to cyclophilin A and thus inhibits calcineurin, leading to immune system suppression.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)



Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.