U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Flecainide is a potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Flecainide has local anesthetic activity and belongs to the membrane stabilizing (Class 1) group of antiarrhythmic agents; it has electrophysiologic effects characteristic of the IC class of antiarrhythmics. Flecainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Flecainide is a sodium channel blocker, binding to voltage gated sodium channels. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses. Ventricular excitability is depressed and the stimulation threshold of the ventricle is increased during diastole. Flecainide is sold under the trade name Tambocor (manufactured by 3M pharmaceuticals). Flecainide went off-patent on February 10, 2004. In addition to being marketed as Tambocor, it is also available in generic version and under the trade names Almarytm, Apocard, Ecrinal, and Flécaine.
Vernakalant is a new antiarrhythmic drug that acts selectively in the atrium, targeting atrial specific channels. Vernakalant is an anti-arrhythmic medicine that acts preferentially in the atria by prolonging atrial refractoriness and by rate-dependently slowing impulse conduction. These anti-fibrillatory actions on refractoriness and conduction are thought to suppress reentry, and are potentiated in the atria during atrial fibrillation. The preferential effects of vernakalant on the atria are postulated to result from its block of currents that are expressed in the atria (e.g., the ultra-rapid delayed rectifier potassium current; and the acetylcholine-activated potassium current), but not in the ventricles, as well as the unique electrophysiologic condition of the fibrillating atria. An oral formulation of vernakalant is in phase II development as a long-term maintenance therapy for patients with atrial fibrillation. An intravenous formulation of vernakalant has been launched in most countries in Europe and Latin America, and in Hong Kong, for the acute conversion of atrial fibrillation. The product has been approved for the acute conversion of atrial fibrillation in South Africa, Iceland, Turkey and is awaiting approval for the same indication in Canada. Phase III development of the IV formulation is ongoing at sites in Asia, and development is currently on hold in the US.
Status:
Possibly Marketed Outside US
Source:
NCT00702117: Phase 4 Interventional Completed Atrial Fibrillation
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ajmaline, (also known by trade names Gilurytmal, Ritmos, and Aritmina) is an alkaloid found in the root of Rauwolfia serpentina, among other plant sources. It is a class Ia antiarrhythmic agent that apparently acts by changing the shape and threshold of cardiac action potentials. The class I antiarrhythmic agents interfere with the sodium channel. A class IA agent lengthens the action potential (right shift) which brings about improvement in abnormal heart rhythms. This drug in particular has a high affinity for the Nav 1.5 sodium channel. Ajmaline produces potent sodium channel blocking effects and a very short half-life which makes it a very useful drug for acute intravenous treatments. The drug has been very popular in some countries for the treatment of atrial fibrillation in patients with the Wolff–Parkinson–White syndrome and in well tolerated monomorphic ventricular tachycardias. It has also been used for many years as a drug to challenge the conduction system of the heart in cases of bundle branch block and syncope. In these cases, abnormal prolongation of the HV interval has been taken as a proof for infrahisian conduction defects tributary for permanent pacemaker implantation. Ajmaline is used as an antiarrhythmic agent.
Flecainide is a potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Flecainide has local anesthetic activity and belongs to the membrane stabilizing (Class 1) group of antiarrhythmic agents; it has electrophysiologic effects characteristic of the IC class of antiarrhythmics. Flecainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Flecainide is a sodium channel blocker, binding to voltage gated sodium channels. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses. Ventricular excitability is depressed and the stimulation threshold of the ventricle is increased during diastole. Flecainide is sold under the trade name Tambocor (manufactured by 3M pharmaceuticals). Flecainide went off-patent on February 10, 2004. In addition to being marketed as Tambocor, it is also available in generic version and under the trade names Almarytm, Apocard, Ecrinal, and Flécaine.
Status:
Possibly Marketed Outside US
Source:
NCT00702117: Phase 4 Interventional Completed Atrial Fibrillation
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ajmaline, (also known by trade names Gilurytmal, Ritmos, and Aritmina) is an alkaloid found in the root of Rauwolfia serpentina, among other plant sources. It is a class Ia antiarrhythmic agent that apparently acts by changing the shape and threshold of cardiac action potentials. The class I antiarrhythmic agents interfere with the sodium channel. A class IA agent lengthens the action potential (right shift) which brings about improvement in abnormal heart rhythms. This drug in particular has a high affinity for the Nav 1.5 sodium channel. Ajmaline produces potent sodium channel blocking effects and a very short half-life which makes it a very useful drug for acute intravenous treatments. The drug has been very popular in some countries for the treatment of atrial fibrillation in patients with the Wolff–Parkinson–White syndrome and in well tolerated monomorphic ventricular tachycardias. It has also been used for many years as a drug to challenge the conduction system of the heart in cases of bundle branch block and syncope. In these cases, abnormal prolongation of the HV interval has been taken as a proof for infrahisian conduction defects tributary for permanent pacemaker implantation. Ajmaline is used as an antiarrhythmic agent.
Status:
Possibly Marketed Outside US
Source:
NCT00702117: Phase 4 Interventional Completed Atrial Fibrillation
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ajmaline, (also known by trade names Gilurytmal, Ritmos, and Aritmina) is an alkaloid found in the root of Rauwolfia serpentina, among other plant sources. It is a class Ia antiarrhythmic agent that apparently acts by changing the shape and threshold of cardiac action potentials. The class I antiarrhythmic agents interfere with the sodium channel. A class IA agent lengthens the action potential (right shift) which brings about improvement in abnormal heart rhythms. This drug in particular has a high affinity for the Nav 1.5 sodium channel. Ajmaline produces potent sodium channel blocking effects and a very short half-life which makes it a very useful drug for acute intravenous treatments. The drug has been very popular in some countries for the treatment of atrial fibrillation in patients with the Wolff–Parkinson–White syndrome and in well tolerated monomorphic ventricular tachycardias. It has also been used for many years as a drug to challenge the conduction system of the heart in cases of bundle branch block and syncope. In these cases, abnormal prolongation of the HV interval has been taken as a proof for infrahisian conduction defects tributary for permanent pacemaker implantation. Ajmaline is used as an antiarrhythmic agent.
Vernakalant is a new antiarrhythmic drug that acts selectively in the atrium, targeting atrial specific channels. Vernakalant is an anti-arrhythmic medicine that acts preferentially in the atria by prolonging atrial refractoriness and by rate-dependently slowing impulse conduction. These anti-fibrillatory actions on refractoriness and conduction are thought to suppress reentry, and are potentiated in the atria during atrial fibrillation. The preferential effects of vernakalant on the atria are postulated to result from its block of currents that are expressed in the atria (e.g., the ultra-rapid delayed rectifier potassium current; and the acetylcholine-activated potassium current), but not in the ventricles, as well as the unique electrophysiologic condition of the fibrillating atria. An oral formulation of vernakalant is in phase II development as a long-term maintenance therapy for patients with atrial fibrillation. An intravenous formulation of vernakalant has been launched in most countries in Europe and Latin America, and in Hong Kong, for the acute conversion of atrial fibrillation. The product has been approved for the acute conversion of atrial fibrillation in South Africa, Iceland, Turkey and is awaiting approval for the same indication in Canada. Phase III development of the IV formulation is ongoing at sites in Asia, and development is currently on hold in the US.