{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects. Veratridine is also an agent that opens voltage dependent Na+ channels, blocks Na+ channel activation, and induces Ca2+ influx. The compound has been observed to be an alkaloid neurotoxin used to amplify sodium permeability. Studies report that Veratridine can trigger exocytosis and induce Ca2+ oscillations. Furthermore, Veratridine has been shown to effect the mitochondrial respiratory chain complexes, induce release of noradrenaline, and increase superoxide anion production. Veratridine competes with BTX binding in a mutually exclusive manner. However, the pharmacological effects of veratridine on Na+ channels are quite different
from those of BTX. First, veratridine reduces the single
Na+ channel conductance drastically whereas BTX does not.
Veratridine therefore is regarded as a partial agonist and BTX
as a full agonist of Na+ channels. Second, under voltage clamp
conditions BTX binds practically irreversibly to Na+
channels whereas veratridine readily dissociates from its binding
site. Both of these drugs, however, bind preferentially
to the open state of Na+ channels. The BTX resistant
Na+ channels in Phyllobates frogs remain sensitive to veratridine. The ceveratrum alkaloids, including Veratridine, have a characteristic hypotensive effect not directly involving the CNS. They slow the heart and lower arterial blood pressure by reflexly stimulating medullary vasomotor centers without decreasing cardiac output (Bezold–Jarisch effect). These agents were introduced in the 1950s as antihypertensive agents; however, they were found to have a narrow therapeutic index and their use was discontinued.
Status:
US Previously Marketed
Source:
DURANEST by DENTSPLY PHARM
(1976)
Source URL:
First approved in 1976
Source:
DURANEST by DENTSPLY PHARM
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Etidocaine, marketed under the trade name Duranest, is a local anesthetic given by injection during surgical procedures and labor and delivery. Etidocaine has a long duration of activity, and the main disadvantage of using during dentistry is increased bleeding during surgery. Etidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Status:
US Previously Marketed
Source:
DURANEST by DENTSPLY PHARM
(1976)
Source URL:
First approved in 1976
Source:
DURANEST by DENTSPLY PHARM
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Etidocaine, marketed under the trade name Duranest, is a local anesthetic given by injection during surgical procedures and labor and delivery. Etidocaine has a long duration of activity, and the main disadvantage of using during dentistry is increased bleeding during surgery. Etidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Status:
US Previously Marketed
Source:
DURANEST by DENTSPLY PHARM
(1976)
Source URL:
First approved in 1976
Source:
DURANEST by DENTSPLY PHARM
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Etidocaine, marketed under the trade name Duranest, is a local anesthetic given by injection during surgical procedures and labor and delivery. Etidocaine has a long duration of activity, and the main disadvantage of using during dentistry is increased bleeding during surgery. Etidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Status:
US Previously Marketed
Source:
DURANEST by DENTSPLY PHARM
(1976)
Source URL:
First approved in 1976
Source:
DURANEST by DENTSPLY PHARM
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Etidocaine, marketed under the trade name Duranest, is a local anesthetic given by injection during surgical procedures and labor and delivery. Etidocaine has a long duration of activity, and the main disadvantage of using during dentistry is increased bleeding during surgery. Etidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Status:
US Previously Marketed
Source:
DURANEST by DENTSPLY PHARM
(1976)
Source URL:
First approved in 1976
Source:
DURANEST by DENTSPLY PHARM
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Etidocaine, marketed under the trade name Duranest, is a local anesthetic given by injection during surgical procedures and labor and delivery. Etidocaine has a long duration of activity, and the main disadvantage of using during dentistry is increased bleeding during surgery. Etidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Status:
US Previously Marketed
Source:
OTOMIDE CHLOROBUTANOL by WHITE
(1961)
Source URL:
First marketed in 1911
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Chlorobutanol, or trichloro-2-methyl-2-propanol, is an analgesic and sedative hypnotic in man, and an experimental general anesthetic. It has antibacterial and antifungal properties. It is also used chemical preservative for parenteral drugs. It was found, that chlorobutanol inhibited mammalian Nav 1.2 channels at concentrations less than those used to preserve parenteral solutions. Its mechanism of inhibiting Na channels differs from that of local anesthetics in that it does not show use dependent or state dependent inhibition.