U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 10 results

Status:
Investigational
Source:
NCT01128335: Phase 2 Interventional Completed Liver Transplantation
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sotrastaurin, an orally-active, first-in-class immunomodulator, is under development by Novartis for the treatment of uveal melanoma and diffuse-large B-cell lymphoma. Sotrastaurin is a low molecular mass synthetic compound that potently inhibits the PKC α, β and the θ isoforms resulting in selective NF-κB inactivation. Sotrastaurin is a potent and selective pan-PKC inhibitor, mostly for PKCθ with Ki of 0.22 nM in a cell-free assay. Inhibition of PKC beta in B-cells results in prevention of NF-kB-mediated signaling and down regulation of NF-kB target genes. This may eventually lead to an induction of G1 cell cycle arrest and tumor cell apoptosis in susceptible tumor cells. This agent may act synergistically with other chemotherapeutic agents. PKC, a family of serine/threonine protein kinases overexpressed in certain types of cancer cells, is involved in cell differentiation, mitogenesis, inflammation, and the activation and survival of lymphocytes. Sotrastaurin is currently in phase II trials by Novartis for the treatment of large B-cell lymphoma and uveal melanoma. Sotrastaurin was in Phase II of clinical development for the prevention of acute rejection after solid organ transplantation and psoriasis, but this reseach had being discontinued.
Ruboxistaurin is an orally bioavailable, selective, potent inhibitor of protein kinase C β developed for treating diabetic retinopathy. In vitro and in vivo non-clinical models have demonstrated that Ruboxistaurin decreases PKC β activity and ameliorates many of the effects of PKC β on pathologic processes in the retina. Ruboxistaurin prevents the slowing of retinal blood flow that is observed by fluorescein video angiography in the eyes of diabetic rats. It is also reported to cause regression of retinal neovascularization produced by laser-induced major branch vein occlusions in a porcine model. Ruboxistaurin positively affected the diabetes-induced retinal blood flow abnormalities in a Phase Ib study in diabetic patients. Ruboxistaurin is in phase III clinical trials for the treatment of diabetic nephropathy and diabetic macular edema. Eli Lilly had submitted Ruboxistaurin for approval in the US and the EU; however, the company subsequently discontinued development as it was unable to demonstrate sufficient efficacy
Ruboxistaurin is an orally bioavailable, selective, potent inhibitor of protein kinase C β developed for treating diabetic retinopathy. In vitro and in vivo non-clinical models have demonstrated that Ruboxistaurin decreases PKC β activity and ameliorates many of the effects of PKC β on pathologic processes in the retina. Ruboxistaurin prevents the slowing of retinal blood flow that is observed by fluorescein video angiography in the eyes of diabetic rats. It is also reported to cause regression of retinal neovascularization produced by laser-induced major branch vein occlusions in a porcine model. Ruboxistaurin positively affected the diabetes-induced retinal blood flow abnormalities in a Phase Ib study in diabetic patients. Ruboxistaurin is in phase III clinical trials for the treatment of diabetic nephropathy and diabetic macular edema. Eli Lilly had submitted Ruboxistaurin for approval in the US and the EU; however, the company subsequently discontinued development as it was unable to demonstrate sufficient efficacy
Status:
Investigational
Source:
NCT01128335: Phase 2 Interventional Completed Liver Transplantation
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sotrastaurin, an orally-active, first-in-class immunomodulator, is under development by Novartis for the treatment of uveal melanoma and diffuse-large B-cell lymphoma. Sotrastaurin is a low molecular mass synthetic compound that potently inhibits the PKC α, β and the θ isoforms resulting in selective NF-κB inactivation. Sotrastaurin is a potent and selective pan-PKC inhibitor, mostly for PKCθ with Ki of 0.22 nM in a cell-free assay. Inhibition of PKC beta in B-cells results in prevention of NF-kB-mediated signaling and down regulation of NF-kB target genes. This may eventually lead to an induction of G1 cell cycle arrest and tumor cell apoptosis in susceptible tumor cells. This agent may act synergistically with other chemotherapeutic agents. PKC, a family of serine/threonine protein kinases overexpressed in certain types of cancer cells, is involved in cell differentiation, mitogenesis, inflammation, and the activation and survival of lymphocytes. Sotrastaurin is currently in phase II trials by Novartis for the treatment of large B-cell lymphoma and uveal melanoma. Sotrastaurin was in Phase II of clinical development for the prevention of acute rejection after solid organ transplantation and psoriasis, but this reseach had being discontinued.
Ruboxistaurin is an orally bioavailable, selective, potent inhibitor of protein kinase C β developed for treating diabetic retinopathy. In vitro and in vivo non-clinical models have demonstrated that Ruboxistaurin decreases PKC β activity and ameliorates many of the effects of PKC β on pathologic processes in the retina. Ruboxistaurin prevents the slowing of retinal blood flow that is observed by fluorescein video angiography in the eyes of diabetic rats. It is also reported to cause regression of retinal neovascularization produced by laser-induced major branch vein occlusions in a porcine model. Ruboxistaurin positively affected the diabetes-induced retinal blood flow abnormalities in a Phase Ib study in diabetic patients. Ruboxistaurin is in phase III clinical trials for the treatment of diabetic nephropathy and diabetic macular edema. Eli Lilly had submitted Ruboxistaurin for approval in the US and the EU; however, the company subsequently discontinued development as it was unable to demonstrate sufficient efficacy
Ruboxistaurin is an orally bioavailable, selective, potent inhibitor of protein kinase C β developed for treating diabetic retinopathy. In vitro and in vivo non-clinical models have demonstrated that Ruboxistaurin decreases PKC β activity and ameliorates many of the effects of PKC β on pathologic processes in the retina. Ruboxistaurin prevents the slowing of retinal blood flow that is observed by fluorescein video angiography in the eyes of diabetic rats. It is also reported to cause regression of retinal neovascularization produced by laser-induced major branch vein occlusions in a porcine model. Ruboxistaurin positively affected the diabetes-induced retinal blood flow abnormalities in a Phase Ib study in diabetic patients. Ruboxistaurin is in phase III clinical trials for the treatment of diabetic nephropathy and diabetic macular edema. Eli Lilly had submitted Ruboxistaurin for approval in the US and the EU; however, the company subsequently discontinued development as it was unable to demonstrate sufficient efficacy