U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 14 results

Iloprost is a second generation structural analog of prostacyclin (PGI) with about ten-fold greater potency than the first generation stable analogs, such as carbaprostacyclin. Iloprost binds with equal affinity to human prostacyclin (Prostanoid IP) and prostaglandin EP1 receptors. Iloprost constricts the ilium and fundus circular smooth muscle as strongly as prostaglandin E2 (PGE2) itself. Iloprost inhibits the ADP, thrombin, and collagen-induced aggregation of human platelets. In whole animals, iloprost acts as a vasodilator, hypotensive, antidiuretic, and prolongs bleeding time. All of these properties help to antagonize the pathological changes that take place in the small pulmonary arteries of patients with pulmonary hypertension. Used for the treatment of pulmonary arterial hypertension.
Ecraprost [AS 013, Circulase] is a prodrug of prostaglandin E(1) within lipid microspheres that is being developed in Japan by Mitsubishi Pharma Corporation and Asahi Glass. It was originally in development with Welfide Corporation. On 1 October 2001, Welfide Corporation (formerly Yoshitomi) merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. Taisho and Seikagaku Corporation had been involved in the development of ecraprost but discontinued their licences to do so. The effects of ecraprost on reperfusion injury, in preclinical studies, had been reported by Taisho. Ecraprost is in phase II in Japan and was in phase II in Europe for the treatment of peripheral arterial disease. It was also in a phase II study in the treatment of diabetic neuropathies. However, this is no longer an active indication. A phase III trial using a lipid emulsion of ecraprost [Circulase] is underway with Mitsubishi Pharma Corporation in the US, using ecraprost for the treatment of patients with severe peripheral arterial disease, which, because of decreased blood flow to the extremities, can lead to painful ulcers on the legs and feet and subsequent amputation. Alpha Therapeutic Corporation (a former subsidiary of Mitsubishi Pharma) was initially involved in trials of ecraprost in the US, but this responsibility has been taken over by the parent company.
Carboprost is an analogue of naturally occurring prostaglandin F2alpha. Administered intramuscularly carboprost stimulates in the gravid uterus myometrial contractions similar to labor contractions at the end of a full term pregnancy. It is indicated for aborting pregnancy between the 13th and 20th weeks of gestation as calculated from the first day of the last normal menstrual period and for the treatment of postpartum hemorrhage due to uterine atony, which has not responded to conventional methods of management. The most frequent adverse reactions observed are related to its contractile effect on smooth muscle: vomiting, diarrhea, nausea, fever and flushing. Carboprost may augment the activity of other oxytocic agents. Concomitant use with other oxytocic agents is not recommended.
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2). Dinoprostone is equivalent to prostaglandin E2 (PGE2). It stimulates labor and delivery by stimulating the uterine, and thus terminates pregnancy. Dinoprostone is also capable of stimulating the smooth muscle of the gastrointestinal tract of man. This activity may be responsible for the vomiting and/or diarrhea that is not uncommon when dinoprostone is used to terminate pregnancy. Dinoprostone administered intravaginally stimulates the myometrium of the gravid uterus to contract in a manner that is similar to the contractions seen in the term uterus during labor, resulting in the evacuation of the products of conception from the uterus. It is believed that dinoprostone exerts its uterine effects via direct myometrial stimulation. It is used for the termination of pregnancy during the second trimester (from the 12th through the 20th gestational week as calculated from the first day of the last normal menstrual period), as well as for evacuation of the uterine contents in the management of missed abortion or intrauterine fetal death up to 28 weeks of gestational age as calculated from the first day of the last normal menstrual period. Also used in the management of nonmetastatic gestational trophoblastic disease (benign hydatidiform mole). Other indications include improving the cervical inducibility (cervical "ripening") in pregnant women at or near term with a medical or obstetrical need for labor induction, and the management of postpartum hemorrhage.
15-Epi-prostaglandin E2 (15R-Prostaglandin E2) is the C-15 epimer of the naturally occurring 15S-Prostaglandin E2 (15S-PGE2) isomer. 15-Epi-prostaglandin E2 is the most physiologically abundant eicosanoid, which is produced predominantly from arachidonic acid by COX and PGES, and exists at some level in nearly all cell types. Prostaglandin E2 acts on four different receptors termed EP1 through EP4 yielding an astounding array of biological effects, but this compound shows much lower potency in most biological assays; however acid catalyzed epimerization can convert this compound to the active form - 15S-Prostaglandin E2. In the in vivo assay, 15R-PGE2 showed anti-inflammatory activity, as well as in vitro inhibition of elastase release from polymorphonuclear cells. In the from polymorphonuclear cells degranulation assay, 15R-PGE2, was the most active compound in the inhibition of myeloperoxidase release.
Status:
Possibly Marketed Outside US
Source:
Rowok by Ono Pharmaceutical|Pharmacia
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ornoprostil is a methyl derivative of PGE1 with anti-ulcreative properties developed in Japan. It is a prostaglandin E1 receptor agonist.
Iloprost is a second generation structural analog of prostacyclin (PGI) with about ten-fold greater potency than the first generation stable analogs, such as carbaprostacyclin. Iloprost binds with equal affinity to human prostacyclin (Prostanoid IP) and prostaglandin EP1 receptors. Iloprost constricts the ilium and fundus circular smooth muscle as strongly as prostaglandin E2 (PGE2) itself. Iloprost inhibits the ADP, thrombin, and collagen-induced aggregation of human platelets. In whole animals, iloprost acts as a vasodilator, hypotensive, antidiuretic, and prolongs bleeding time. All of these properties help to antagonize the pathological changes that take place in the small pulmonary arteries of patients with pulmonary hypertension. Used for the treatment of pulmonary arterial hypertension.
Ecraprost [AS 013, Circulase] is a prodrug of prostaglandin E(1) within lipid microspheres that is being developed in Japan by Mitsubishi Pharma Corporation and Asahi Glass. It was originally in development with Welfide Corporation. On 1 October 2001, Welfide Corporation (formerly Yoshitomi) merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. Taisho and Seikagaku Corporation had been involved in the development of ecraprost but discontinued their licences to do so. The effects of ecraprost on reperfusion injury, in preclinical studies, had been reported by Taisho. Ecraprost is in phase II in Japan and was in phase II in Europe for the treatment of peripheral arterial disease. It was also in a phase II study in the treatment of diabetic neuropathies. However, this is no longer an active indication. A phase III trial using a lipid emulsion of ecraprost [Circulase] is underway with Mitsubishi Pharma Corporation in the US, using ecraprost for the treatment of patients with severe peripheral arterial disease, which, because of decreased blood flow to the extremities, can lead to painful ulcers on the legs and feet and subsequent amputation. Alpha Therapeutic Corporation (a former subsidiary of Mitsubishi Pharma) was initially involved in trials of ecraprost in the US, but this responsibility has been taken over by the parent company.
Ecraprost [AS 013, Circulase] is a prodrug of prostaglandin E(1) within lipid microspheres that is being developed in Japan by Mitsubishi Pharma Corporation and Asahi Glass. It was originally in development with Welfide Corporation. On 1 October 2001, Welfide Corporation (formerly Yoshitomi) merged with Mitsubishi-Tokyo Pharmaceuticals to form Mitsubishi Pharma Corporation. The new company is a subsidiary of Mitsubishi Chemical. Taisho and Seikagaku Corporation had been involved in the development of ecraprost but discontinued their licences to do so. The effects of ecraprost on reperfusion injury, in preclinical studies, had been reported by Taisho. Ecraprost is in phase II in Japan and was in phase II in Europe for the treatment of peripheral arterial disease. It was also in a phase II study in the treatment of diabetic neuropathies. However, this is no longer an active indication. A phase III trial using a lipid emulsion of ecraprost [Circulase] is underway with Mitsubishi Pharma Corporation in the US, using ecraprost for the treatment of patients with severe peripheral arterial disease, which, because of decreased blood flow to the extremities, can lead to painful ulcers on the legs and feet and subsequent amputation. Alpha Therapeutic Corporation (a former subsidiary of Mitsubishi Pharma) was initially involved in trials of ecraprost in the US, but this responsibility has been taken over by the parent company.

Showing 1 - 10 of 14 results