U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 81 - 90 of 99 results

Status:
US Previously Marketed
Source:
Matromycin by Pfizer
(1956)
Source URL:
First approved in 1956
Source:
Matromycin by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oleandomycin is a macrolide antibiotic, which was first described under the designation P.A.105 by Sobin, English, and Celmer (1954-5). Later it appeared on the market under three names and in two forms: as pure oleandomycin ("matromycin," Pfizer; "romicil," Hoffmann-La Roche) and as a mixture with twice its weight of tetracycline ("sigmamycin," Pfizer). Oleandomycin can be employed to inhibit the activities of bacteria responsible for causing infections in the upper respiratory tract much like Erythromycin can. Both can affect staphylococcus and enterococcus genera. Oleoandomycin is reported to inhibit most gram-positive bacteria, but has only a slight inhibiting effect on gram-negative bacteria, rickettsiae, and larger viruses. The spectrum of activity on micro-organisms is therefore wider than that of penicillin and streptomycin, but narrower than that of chloramphenicol and the tetracyclines. Oleandomycin is approved as a veterinary antibiotic in some countries. It has been approved as a swine and poultry antibiotic in the United States. However, it is currently only approved in the United States for production uses. Oleandomycin is a bacteriostatic agent. Like erythromycin, oleandomycin binds to the 50s subunit of bacterial ribosomes, inhibiting the completion of proteins vital to survival and replication. It interferes with translational activity but also with 50s subunit formation. However, unlike erythromycin and its effective synthetic derivatives, it lacks a 12-hydroxyl group and a 3-methoxy group. This change in structure may adversely affect its interactions with 50S structures and explain why it is a less powerful antibiotic.
Status:
US Previously Marketed
Source:
Matromycin by Pfizer
(1956)
Source URL:
First approved in 1956
Source:
Matromycin by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oleandomycin is a macrolide antibiotic, which was first described under the designation P.A.105 by Sobin, English, and Celmer (1954-5). Later it appeared on the market under three names and in two forms: as pure oleandomycin ("matromycin," Pfizer; "romicil," Hoffmann-La Roche) and as a mixture with twice its weight of tetracycline ("sigmamycin," Pfizer). Oleandomycin can be employed to inhibit the activities of bacteria responsible for causing infections in the upper respiratory tract much like Erythromycin can. Both can affect staphylococcus and enterococcus genera. Oleoandomycin is reported to inhibit most gram-positive bacteria, but has only a slight inhibiting effect on gram-negative bacteria, rickettsiae, and larger viruses. The spectrum of activity on micro-organisms is therefore wider than that of penicillin and streptomycin, but narrower than that of chloramphenicol and the tetracyclines. Oleandomycin is approved as a veterinary antibiotic in some countries. It has been approved as a swine and poultry antibiotic in the United States. However, it is currently only approved in the United States for production uses. Oleandomycin is a bacteriostatic agent. Like erythromycin, oleandomycin binds to the 50s subunit of bacterial ribosomes, inhibiting the completion of proteins vital to survival and replication. It interferes with translational activity but also with 50s subunit formation. However, unlike erythromycin and its effective synthetic derivatives, it lacks a 12-hydroxyl group and a 3-methoxy group. This change in structure may adversely affect its interactions with 50S structures and explain why it is a less powerful antibiotic.
Status:
Possibly Marketed Outside US
Source:
NCT04162834: Phase 4 Interventional Completed Kidney Cancer
(2019)
Source URL:
First approved in 1995
Source:
Papaverine Hydrochloride by American Regent, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. Papaverine is a vasodilating agent. Papaverine is used for the treating certain conditions that are accompanied by smooth muscle spasms (eg, blood vessel, urinary, gallbladder, or intestinal spasm). Papaverine is a nonxanthine phosphodiesterase inhibitor for the relief of cerebral and peripheral ischemia associated with arterial spasm and myocardial ischemia complicated by arrhythmias. The main actions of Papaverine are exerted on cardiac and smooth muscle. Like qathidine, Papaverine acts directly on the heart muscle to depress conduction and prolong the refractory period. Papaverine relaxes various smooth muscles. This relaxation may be prominent if spasm exists. The muscle cell is not paralyzed by Papaverine and still responds to drugs and other stimuli causing contraction. The antispasmodic effect is a direct one, and unrelated to muscle innervation. Papaverine is practically devoid of effects on the central nervous system. Papaverine relaxes the smooth musculature of the larger blood vessels, especially coronary, systemic peripheral, and pulmonary arteries. Papaverine is a potent, specific inhibitor of PDE10A. Papaverine for treatment of erectile dysfunction (ED) is excluded from coverage.
Status:
Possibly Marketed Outside US
Source:
NCT04162834: Phase 4 Interventional Completed Kidney Cancer
(2019)
Source URL:
First approved in 1995
Source:
Papaverine Hydrochloride by American Regent, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. Papaverine is a vasodilating agent. Papaverine is used for the treating certain conditions that are accompanied by smooth muscle spasms (eg, blood vessel, urinary, gallbladder, or intestinal spasm). Papaverine is a nonxanthine phosphodiesterase inhibitor for the relief of cerebral and peripheral ischemia associated with arterial spasm and myocardial ischemia complicated by arrhythmias. The main actions of Papaverine are exerted on cardiac and smooth muscle. Like qathidine, Papaverine acts directly on the heart muscle to depress conduction and prolong the refractory period. Papaverine relaxes various smooth muscles. This relaxation may be prominent if spasm exists. The muscle cell is not paralyzed by Papaverine and still responds to drugs and other stimuli causing contraction. The antispasmodic effect is a direct one, and unrelated to muscle innervation. Papaverine is practically devoid of effects on the central nervous system. Papaverine relaxes the smooth musculature of the larger blood vessels, especially coronary, systemic peripheral, and pulmonary arteries. Papaverine is a potent, specific inhibitor of PDE10A. Papaverine for treatment of erectile dysfunction (ED) is excluded from coverage.
Status:
Possibly Marketed Outside US
Source:
NCT04162834: Phase 4 Interventional Completed Kidney Cancer
(2019)
Source URL:
First approved in 1995
Source:
Papaverine Hydrochloride by American Regent, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. Papaverine is a vasodilating agent. Papaverine is used for the treating certain conditions that are accompanied by smooth muscle spasms (eg, blood vessel, urinary, gallbladder, or intestinal spasm). Papaverine is a nonxanthine phosphodiesterase inhibitor for the relief of cerebral and peripheral ischemia associated with arterial spasm and myocardial ischemia complicated by arrhythmias. The main actions of Papaverine are exerted on cardiac and smooth muscle. Like qathidine, Papaverine acts directly on the heart muscle to depress conduction and prolong the refractory period. Papaverine relaxes various smooth muscles. This relaxation may be prominent if spasm exists. The muscle cell is not paralyzed by Papaverine and still responds to drugs and other stimuli causing contraction. The antispasmodic effect is a direct one, and unrelated to muscle innervation. Papaverine is practically devoid of effects on the central nervous system. Papaverine relaxes the smooth musculature of the larger blood vessels, especially coronary, systemic peripheral, and pulmonary arteries. Papaverine is a potent, specific inhibitor of PDE10A. Papaverine for treatment of erectile dysfunction (ED) is excluded from coverage.
Status:
Possibly Marketed Outside US
Source:
NCT04162834: Phase 4 Interventional Completed Kidney Cancer
(2019)
Source URL:
First approved in 1995
Source:
Papaverine Hydrochloride by American Regent, Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. Papaverine is a vasodilating agent. Papaverine is used for the treating certain conditions that are accompanied by smooth muscle spasms (eg, blood vessel, urinary, gallbladder, or intestinal spasm). Papaverine is a nonxanthine phosphodiesterase inhibitor for the relief of cerebral and peripheral ischemia associated with arterial spasm and myocardial ischemia complicated by arrhythmias. The main actions of Papaverine are exerted on cardiac and smooth muscle. Like qathidine, Papaverine acts directly on the heart muscle to depress conduction and prolong the refractory period. Papaverine relaxes various smooth muscles. This relaxation may be prominent if spasm exists. The muscle cell is not paralyzed by Papaverine and still responds to drugs and other stimuli causing contraction. The antispasmodic effect is a direct one, and unrelated to muscle innervation. Papaverine is practically devoid of effects on the central nervous system. Papaverine relaxes the smooth musculature of the larger blood vessels, especially coronary, systemic peripheral, and pulmonary arteries. Papaverine is a potent, specific inhibitor of PDE10A. Papaverine for treatment of erectile dysfunction (ED) is excluded from coverage.
Terodiline is a racemic compound, and its main indication was detrusor instability syndrome. With effects on detrusor muscles, terodiline was used for bladder incontinence. Terodiline has both anticholinergic and calcium antagonist properties and, as a result, effectively reduces abnormal bladder contractions caused by detrusor instability. When administered to adult patients with urge incontinence (generally as a 25mg twice-daily dose) terodiline reduces diurnal and nocturnal micturition frequency and incontinence episodes. The (R)-enantiomer of terodiline (R( )-terodiline) can trigger cardiovascular toxicities, such as LQTS and TdP, which led to its withdrawal in 1991. Terodiline under the brand name Micturin was licensed and marketed in the United Kingdom, in 1986, for the management of a specific form of urinary incontinence, detrusor instability. It was eventually marketed in 20 other countries, mainly in Europe and Japan, but not the United States of America.
Perhexiline, 2-(2,2-dicyclohexylethyl)piperidine, is an anti-anginal drug. Perhexiline reduces fatty acid metabolism through the inhibition of carnitine palmitoyltransferase, the enzyme responsible for mitochondrial uptake of long-chain fatty acids. Perhexiline is used for reducing the frequency of moderate to severe attacks of angina pectoris due to coronary artery disease in patients who have not responded to other conventional therapy or in whom such therapy may be contraindicated. Heart Metabolics Limited is developing perhexiline for the treatment of hypertrophic cardiomyopathy
Perhexiline, 2-(2,2-dicyclohexylethyl)piperidine, is an anti-anginal drug. Perhexiline reduces fatty acid metabolism through the inhibition of carnitine palmitoyltransferase, the enzyme responsible for mitochondrial uptake of long-chain fatty acids. Perhexiline is used for reducing the frequency of moderate to severe attacks of angina pectoris due to coronary artery disease in patients who have not responded to other conventional therapy or in whom such therapy may be contraindicated. Heart Metabolics Limited is developing perhexiline for the treatment of hypertrophic cardiomyopathy
Status:
Possibly Marketed Outside US
Source:
NCT00180102: Phase 4 Interventional Completed Leukemia, Nonlymphocytic, Acute
(2003)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Aminoacridine derivative that is a potent intercalating antineoplastic agent. It is effective in the treatment of acute leukemias and malignant lymphomas, but has poor activity in the treatment of solid tumors. It is frequently used in combination with other antineoplastic agents in chemotherapy protocols. It produces consistent but acceptable myelosuppression and cardiotoxic effects. Although its mechanism of action is incompletely defined, amsacrine inhibits DNA synthesis by binding to and intercalating with DNA. Amsacrine also inhibits topoisomerase II activity and may exert an effect on cell membranes. This agent also possesses immunosuppressive and antiviral properties. While amsacrine is not cell cycle phase-specific, cytotoxicity is maximal during the G2 and S phases.

Showing 81 - 90 of 99 results