{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03648489: Phase 2 Interventional Completed Ovarian Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Sapanisertib is an oral dual inhibitor of mTORC1/mTORC2, discovered by Intellikine for the treatment of cancer. The drug is being tested in phase II of clinical trials for different cancers among which are sarcoma, hepatocellular carcinoma, etc. The drug is currently developed by Takeda with breast cancer, renal cancer and endometrial cancer being the main target indications.
Status:
Investigational
Source:
NCT03070132: Phase 3 Interventional Withdrawn Trigeminal Neuralgia
(2023)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Raxatrigine also known as GSK1014802 and CNV-1014802, is a novel analgesic under development by Convergence Pharmaceuticals for the treatment of lumbosacral radiculopathy (sciatica) and trigeminal neuralgia (TGN). It is a novel state dependent small molecule sodium channel blocker that preferentially inhibits the Nav 1.7 ion channel, a therapeutic target implicated by genetics in human pain conditions. Raxatrigine is thought to penetrate the central nervous system and block Nav channels in a novel manner. CNV1014802 was granted orphan drug designation in 2013 by the US Food and Drug Administration (FDA) for the treatment of trigeminal neuralgia.
Status:
Investigational
Source:
NCT00028782: Not Applicable Interventional Terminated Advanced Malignant Mesothelioma
(2001)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Etanidazole (also known as Radinyl) is a 2-nitroimidazole with radiosensitizing properties. Etanidazole exerts its therapeutic action by depleting glutathione and inhibiting glutathione S-transferase, thus enhancing the anticancer effects of radiation therapy. Etanidazole was tested in Phase III clinical trials in patients with advanced head and neck cancer, however, its development was stopped. A fluorinated etanidazole (EF5) may also be useful as an imaging agent for identification of hypoxic, drug-resistant regions of primary tumors and metastases.
Status:
Investigational
Source:
NCT02303782: Phase 1/Phase 2 Interventional Withdrawn Acute Myeloid Leukemia
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
The BET-bromodomain inhibitor OTX015 (MK-8628) was initially developed by Mitsubishi Tanabe Pharma Corporation, but then was licensed by OncoEthix, privately held biotechnology company. OTX015 is a selective bromodomains: BRD2, BRD3, and BRD4 inhibitor and inhibits their binding to AcH4. Bromodomains have an important role in the targeting of chromatin-modifying enzymes to specific sites, including methyltransferases, HATs and transcription factors and regulate diverse biological processes from cell proliferation and differentiation to energy homeostasis and neurological processes. OTX015 has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models. Oral administration of OTX-015 markedly inhibited tumor growth and reduced tumor volume. OTX015 is currently in Phase 1b studies for the treatment of hematological malignancies and advanced solid tumors such as Triple Negative Breast Cancer, Non-small Cell Lung Cancer, Castrate-resistant Prostate Cancer (CRPC) and Pancreatic Ductal Adenocarcinoma. In addition, OTX015 was in phase II for the treatment of Glioblastoma Multiforme, but there were not detected clinical activity of the drug in the treatment populations and trial was closed.
Status:
Investigational
Source:
NCT02132468: Phase 2 Interventional Completed Neuroendocrine Tumors
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Combretastatin A4 is a vascular disrupting agent (VDA) that targets tumor vasculature to inhibit angiogenesis. Combretastatin A4 is a tubulin-binding agent that binds at or near the colchicine binding site of β-tubulin and inhibits tubulin assembly. This tubulin-binding agent was originally isolated from an African shrub, Combretum caffrum. Combretastatin A4 is cytotoxic to umbilical-vein endothelial cells (HUVECs) and to a range of cells derived from primary tumors and these cytotoxicity profiles have been used to assess several novel analogs of the drug for future development. Combretastatin A4 has antitumor activity by inhibiting AKT function. The inhibited AKT activation causes decreased cell proliferation, cell cycle arrest, and reduced in vitro migration/invasiveness and in vivo metastatic ability. Several studies in mice have shown that a single administration of combretastatin A4 (100
mg/kg) does not significantly affect primary tumor growth. However, repeated administration (12.5 – 25.0mg/kg twice daily) for periods of 10 – 20 days resulted in approximately 50% retardation of growth of ectopic Lewis lung carcinoma and substantial growth delay of T138 spontaneous murine breast tumors. In clinical studies, Combretastatin A4 has been well tolerated in patients at doses up to 56 mg/m2, following a protocol of five daily 10-minute intravenous infusions every 21 days. The disodium combretastatin A4 phosphate prodrug is currently undergoing clinical trials in the UK and USA.