{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2015)
Source:
NDA207500
(2015)
Source URL:
First approved in 2015
Source:
NDA207500
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Isavuconazole is an active form of isavuconazonium, a prodrug which is marketed under the name Cresemba. Isavuconazole inhibits lanosterol 14-alpha demethylase (or CYP51A1) and leads to the accumulation of ergosterol toxic precursors in the fungal cytoplasm. Isavuconazole is indicated for the treatment of invasive aspergillosis and invasive mucormycosis.
Status:
US Approved Rx
(2015)
Source:
NDA208434
(2015)
Source URL:
First approved in 2015
Source:
NDA208434
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Alectinib is a second generation oral drug that selectively inhibits the activity of anaplastic lymphoma kinase (ALK) tyrosine kinase. It was developed by Chugai Pharmaceutical Co. Japan, which is part of the Hoffmann-La Roche group. Alectinib is specifically used in the treatment of non-small cell lung cancer (NSCLC) expressing the ALK-EML4 (echinoderm microtubule-associated protein-like 4) fusion protein that causes proliferation of NSCLC cells. Inhibition of ALK prevents phosphorylation and subsequent downstream activation of STAT3 and AKT resulting in reduced tumour cell viability. Approved under accelerated approval in 2015, alectinib is indicated for use in patients who have progressed on or were not tolerant of crizotinib, which is associated with the development of resistance. Alectinib is marketed as Alecensa.
Status:
US Approved Rx
(2015)
Source:
NDA207953
(2015)
Source URL:
First approved in 2015
Source:
NDA207953
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Trabectedin (ET-743) is a marine alkaloid isolated from the Caribbean tunicate Ecteinascidia turbinata. Trabectedin was approved for the treatment of liposarcoma or leiomyosarcoma (USA and Europe) and ovarian cancer (only in Europe). Trabectedin exerts its anti-cancer action by binding guanine residues in the minor groove of DNA. The binding prevents DNA from interacting with transcription factors and the reparation system and results in perturbation of the cell cycle and eventual cell death.
Status:
US Approved Rx
(2025)
Source:
ANDA213683
(2025)
Source URL:
First approved in 2015
Source:
NDA205422
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Brexpiprazole is a novel D2 dopamine and serotonin 1A partial agonist, called serotonin-dopamine activity modulator (SDAM), and a potent antagonist of serotonin 2A receptors, noradrenergic alpha 1B and 2C receptors. Brexpiprazole is approved for the treatment of schizophrenia, and as an adjunctive treatment for major depressive disorder (MDD). Although it failed Phase II clinical trials for ADHD, it has been designed to provide improved efficacy and tolerability (e.g., less akathisia, restlessness and/or insomnia) over established adjunctive treatments for major depressive disorder (MDD).Brexpiprazole is sold under the brand name Rexulti. Although the mechanism of action of brexpiprazole in the treatment of MDD and schizophrenia is unclear, the efficacy of brexpiprazole may be attributed to partial agonist activity at serotonin 1A and dopamine D2 receptors, and antagonist activity at serotonin 2A receptors.
Status:
US Approved Rx
(2015)
Source:
NDA206500
(2015)
Source URL:
First approved in 2015
Source:
NDA206500
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rolapitant (VARUBI) is neurokinin 1 (NK1) receptor antagonist. Rolapitant does not have significant affinity for the NK2 or NK3 receptors. Drug is indicated in combination with other antiemetic agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Most common adverse reactions are: neutropenia and hiccups at Cisplatin Based Highly Emetogenic Chemotherapy; decreased appetite, neutropenia and dizziness at Moderately Emetogenic Chemotherapy and Combinations of Anthracycline and Cyclophosphamide. Inhibition of BCRP and P-gp by rolapitant can increase plasma concentrations of the concomitant drug and potential for adverse reactions. Strong CYP3A4 Inducers (e.g., rifampin) can significantly reduce plasma concentrations of rolapitant and decrease the efficacy of VARUBI.
Status:
US Approved Rx
(2015)
Source:
NDA208065
(2015)
Source URL:
First approved in 2015
Source:
NDA208065
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Osimertinib is an oral, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) drug developed by AstraZeneca Pharmaceuticals. Its use is indicated for the treatment of metastatic non-small cell lung cancer (NSCLC) in cases where tumour EGFR expression is positive for the T790M mutation as detected by FDA-approved testing and which has progressed following therapy with a first-generation EGFR tyrosine kinase inhibitor. Approximately 10% of patients with NSCLC have a rapid and clinically effective response to EGFR-TKIs due to the presence of specific activating EGFR mutations within the tumour cells. More specifically, deletions around the LREA motif in exon 19 and exon 21 L858R point mutations are correlated with response to therapy. Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that binds to certain mutant forms of EGFR (T790M, L858R, and exon 19 deletion) that predominate in non-small cell lung cancer (NSCLC) tumours following treatment with first-line EGFR-TKIs. As a third-generation tyrosine kinase inhibitor, osimertinib is specific for the gate-keeper T790M mutation which increases ATP binding activity to EGFR and results in poor prognosis for late-stage disease. Furthermore, osimertinib has been shown to spare wild-type EGFR during therapy, thereby reducing non-specific binding and limiting toxicity. Osimertinib is marketed under the brand name Tagrisso.
Status:
US Approved Rx
(2015)
Source:
NDA206940
(2015)
Source URL:
First approved in 2015
Source:
NDA206940
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Eluxadoline, an orally active mixed μ opioid receptor (μOR) agonist δ opioid receptor (δOR) antagonist. Eluxadoline normalizes gastrointestinal (GI) transit and defecation under conditions of novel environment stress or post-inflammatory altered GI function. Allergan (previously Actavis) is developing eluxadoline for the treatment of diarrhoea-predominant irritable bowel syndrome. The agent was originated by Janssen Pharmaceutica. Eluxadoline has been launched in the US under trade name VIBERZI (eluxadoline) tablets, while is at the preregistration stage in the EU.
Status:
US Approved Rx
(2024)
Source:
ANDA213728
(2024)
Source URL:
First approved in 2015
Source:
NDA207620
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sacubitril is a prodrug neprilysin inhibitor used in combination with valsartan (sold under the brand name Entresto among others) to reduce the risk of cardiovascular events in patients with chronic heart failure (NYHA Class II-IV) and reduced ejection fraction. It was approved under the FDA's priority review process for use in heart failure on July 7, 2015. Sacubitril's active metabolite, LBQ657 inhibits neprilysin, a neutral endopeptidase that would typically cleave natiuretic peptides such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and c-type natriuretic peptide (CNP). ANP and BNP are released under atrial and ventricle stress, which activate downstream receptors leading to vasodilation, natriuresis and diuresis. Under normal conditions, neprilysin breaks down other vasodilating peptides and also vasoconstrictors such as angiotensin I and II, endothelin-1 and peptide amyloid beta-protein. Inhibition of neprilysin therefore leads to reduced breakdown and increased concentration of endogenous natriuretic peptides in addition to increased levels of vasoconstricting hormones such as angiotensin II.
Status:
US Approved Rx
(2015)
Source:
NDA204370
(2015)
Source URL:
First approved in 2015
Source:
NDA204370
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cariprazine is an antipsychotic approved by FDA for the treatment of schizophrenia and bipolar I disorder. The drug has a unique clinical action which is explained by its ability to act on dopamine D3 receptors. Pharmacology studies revealed that cariprazine is a dual partial agonist of dopamine D2 and D3 receptors as well as serotonin 5HT1a, 2a and 2b receptors.
Status:
US Approved Rx
(2015)
Source:
NDA206192
(2015)
Source URL:
First approved in 2015
Source:
NDA206192
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.