U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 131 - 140 of 1819 results

Nintedanib is a receptor tyrosine kinase inhibitor with potential antiangiogenic and antineoplastic activities. It is the only kinase inhibitor drug approved to treat idiopathic pulmonary fibrosis. that targets multiple receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs). Nintedanib inhibits the following RTKs: platelet-derived growth factor receptor (PDGFR) α and β, fibroblast growth factor receptor (FGFR) 1-3, vascular endothelial growth factor receptor (VEGFR) 1-3, and Fms-like tyrosine kinase-3 (FLT3). Among them, FGFR, PDGFR, and VEGFR have been implicated in IPF pathogenesis. Nintedanib binds competitively to the adenosine triphosphate (ATP) binding pocket of these receptors and blocks the intracellular signaling which is crucial for the proliferation, migration, and transformation of fibroblasts representing essential mechanisms of the IPF pathology.
Tavaborole is a boron-based pharmaceutical agent indicated for the topical treatment of toenail onychomycosis, a fungal infection of the nail and nail bed due to Trichophyton rubrum or Trichophyton mentagrophytes infection. Tavaborole acts by inhibiting an aminoacyl-transfer ribonucleic acid (tRNA) synthetase (AARS) - Leucyl-tRNA synthetase. Leucyl-tRNA synthetase is an essential fungal enzyme required for protein synthesis and for the catalysis of ATP-dependent ligation of L-leucine to tRNA(Leu). Tavaborole’s low molecular weight (approximately half of most antifungals, such as terbinafine and efinaconazole) permits optimal nail plate penetration, superior to that of existing topical antifungal medications.
Suvorexant is a selective dual antagonist of orexin receptors OX1R and OX2R. It has been approved for the treatment of insomnia. The mechanism by which suvorexant exerts its therapeutic effect in insomnia is presumed to be through antagonism of orexin receptors. The orexin neuropeptide signaling system is a central promoter of wakefulness. Blocking the binding of wake-promoting neuropeptides orexin A and orexin B to receptors OX1R and OX2R is thought to suppress wake drive.
Olodaterol is a beta2-adrenoceptor agonist discovered by Boehringer Ingelheim and approved for the treatment of Chronic Obstructive Pulmonary Disease. The compound exerts its pharmacological effects by binding and activation of beta2-adrenoceptors after inhalation. Activation of these receptors in the airways results in a stimulation of intracellular adenyl cyclase, an enzyme that mediates the synthesis of cyclic-3’, 5’ adenosine monophosphate (cAMP). Elevated levels of cAMP induce bronchodilation by relaxation of airway smooth muscle cells. Olodaterol effect lasts for 24 hours.
Tasimelteon, developed by Vanda Pharmaceuticals Inc under license from Bristol-Myers Squibb Co, is a melatonin receptor agonist. Tasimelteon differs structurally from melatonin and drugs with known melatonin agonist activity, in particular by its distinct aromatic group and linker. Tasimelteon bears also no structural relationship to any other approved active substance. Tasimelteon is presumably acts through activation of MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. Tasimelteon is approved for the treatment of Non24-Hour Sleep-Wake Disorder.
Apremilast (brand name Otezla) selective inhibitor of phosphodiesterase 4 is used for the treatment of patients with moderate to severe plaque psoriasis. OTEZLA is the first and only PDE4 inhibitor approved for the treatment of plaque psoriasis, a chronic inflammatory disease of the skin resulting from an uncontrolled immune response. Apremilast also inhibits spontaneous production of TNF-alpha from human rheumatoid synovial cells. It has anti-inflammatory activity. By inhibiting PDE-4, apremilast increases intracellular levels of cAMP and thereby inhibits the production of multiple proinflammatory mediators including PDE-4, TNF-alpha, interleukin-2 (IL-2), interferon-gamma, leukotrienes, and nitric oxide synthase.
Olaparib is an oral inhibitor of poly (ADP-ribose) polymerase enzymes, including PARP1, PARP2, and PARP3 which are involved in normal cellular homeostasis, such as DNA transcription, cell cycle regulation, and DNA repair. Olaparib has shown activity in ovarian and breast tumors with known BRCA mutations and was the first FDA approved drug in this class. Lynparza (olaparib) is indicated for treatment of gBRCA-mutated advanced ovarian cancer. Its use together with other chemotherapy medicines can lead to increased effects on the blood resulting in reduction in the numbers of white blood cells and platelets, and anaemia.
Belinostat is a hydroxamate-type histone deacetylase inhibitor indicated for the treatment of relapsed or refractory peripheal T-cell lymphoma. The compound received orphan drug designation for the treatment of malignant thymomas. Acting on a histone deacetylase Belinostat causes the accumulation of acetylated histones and other proteins, inducing cell cycle arrest and/or apoptosis of some transformed cells. Belinostat targets HDAC enzymes, thereby inhibiting tumor cell proliferation, inducing apoptosis, promoting cellular differentiation, and inhibiting angiogenesis. This agent may sensitize drug-resistant tumor cells to other antineoplastic agents, possibly through a mechanism involving the down-regulation of thymidylate synthase. PXD101 has been shown in preclinical studies to have the potential to treat a wide range of solid and hematologic malignancies either as a monotherapy or in combination with other active agents, and both an oral and intravenous formulation of the drug are being evaluated in clinical trials.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Alogliptin (trade name Nesina in the US and Vipidia in Europe) is an orally administered anti-diabetic drug in the DPP-4 inhibitor class, discovered by Takeda Pharmaceutical Company's wholly owned subsidiary, Takeda San Diego, Inc. (former Syrrx) which was acquired by Takeda in 2005. Alogliptin does not decrease the risk of heart attack and stroke. Like other members of the gliptin class, it causes little or no weight gain, exhibits relatively little risk of causing hypoglycemia, and exhibits relatively modest glucose-lowering activity. Alogliptin and other gliptins are commonly used in combination with metformin in patients whose diabetes cannot adequately be controlled with metformin alone.
Macitentan is an orally active, dual endothelin receptor antagonist with tissue targeting properties. Macitentan inhibits both ETA and ETB receptors and prevents them from binding to ET-1. Macitentan displays high affinity and sustained occupancy of the ET receptors in human pulmonary arterial smooth muscle cells. One of the metabolites of macitentan is also pharmacologically active at the ET receptors and is estimated to be about 20% as potent as the parent drug in vitro. Macitentan is approved in the EU (as monotherapy or combination therapy) for the long-term treatment of pulmonary arterial hypertension (PAH) in adults of WHO functional class II or III, and in the USA for the treatment of PAH (WHO group I) to delay disease progression and reduce hospitalization for PAH.