U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 231 - 240 of 911 results

Status:
First marketed in 1931
Source:
Benzedrine Inhaler
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Pilocarpine is an alkaloid extracted from plants of the genus Pilocarpus. The drug stimulates the muscarinic receptors (especially M3, which is expressed in smooth muscles and glands) and thus induces salivation, hypertension and water intake. Pilocarpine was appoved by FDA for the alleviation of symptoms of xerostomia in patients who have undergone radiation therapy to their head and neck cancer and in patients with Sjogren's Syndrome. Ophthalmic solution of the drug is prescribed for the treatment of glaucoma, ocular hypertension, postoperative elevated intraocular pressure, etc.
Cocaine is an alkaloid ester extracted from the leaves of plants including coca. Cocaine is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar which can result in additional toxicity. Following repeated doses, a person may have decreased the ability to feel pleasure and be very physically tired. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood-brain barrier and may lead to the breakdown of the barrier.
Status:
US Approved OTC
Source:
21 CFR 333.210(c) antifungal miconazole nitrate
Source URL:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Miconazole is a synthetic imidazole derivative, a topical antifungal agent for use in the local treatment of vaginal, and skin and nail infections due to yeasts and dermatophytes. It is particularly active against Candida spp., Trichophyton spp., Epidermophyton spp., Microsporum spp. and Pityrosporon orbiculare (Malassezia furfur), but also possesses some activity against Gram-positive bacteria. It binds to the heme moiety of the fungal cytochrome P-450 dependent enzyme lanosterol 14-alpha-demethlyase. Inhibits 14-alpha-demethlyase, blocks formation of ergosterol and leads to the buildup of toxic methylated 14-a-sterols. Miconazole also affects the synthesis of triglycerides and fatty acids and inhibits oxidative and peroxidative enzymes, increasing the amount of active oxygen species within the cell.
Status:
US Approved OTC
Source:
21 CFR 341.12(e) cough/cold:antihistamine dexchlorpheniramine maleate
Source URL:
First approved in 1958
Source:
Polaramine by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dexchlorpheniramine, the d-isomer of the racemic compound chlorpheniramine, is two times more active than chlorpheniramine. Dexchlorpheniramine does not prevent the release of histamine, but rather, competes with free histamine for binding at the H1-receptor sites, and competitively antagonizes the effects of histamine on H1-receptors in the GI tract, uterus, large blood vessels, and bronchial muscle. Blockade of H1-receptors also suppresses the formation of oedema, flare, and pruritus that result from histaminic activity. Since dexchlorpheniramine binds to central and peripheral H1-receptors, sedative effects are likely to occur. H1-antagonists are structurally similar to anticholinergic agents and therefore possess the potential to exhibit anticholinergic properties of varying degrees. They also have antipruritic effects. Dexchlorpheniramine has high antihistaminic activity, moderate anticholinergic effects and minimal sedative effects. The drug does not possess antiemetic properties.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(3) cough/cold:antitussive dextromethorphan
Source URL:
First approved in 1954
Source:
Romilar by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dextromethorphan is a non-narcotic morphine derivative widely used as an antitussive for almost 40 years. It has attracted attention due to its anticonvulsant and neuroprotective properties. It is a cough suppressant in many over-the-counter cold and cough medicines. In 2010, the FDA approved the combination product dextromethorphan/quinidine for the treatment of pseudobulbar affect. Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high-affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives and is used to study the involvement of glutamate receptors in neurotoxicity. Dextromethorphan (DM) is a sigma-1 receptor agonist and an uncompetitive NMDA receptor antagonist. The mechanism by which dextromethorphan exerts therapeutic effects in patients with pseudobulbar affect is unknown. Dextromethorphan should not be taken with monoamine oxidase inhibitors due to the potential for serotonin syndrome. Dextromethorphan is extensively metabolized by CYP2D6 to dextrorphan, which is rapidly glucuronidated and unable to cross the blood-brain barrier.

Class (Stereo):
CHEMICAL (ACHIRAL)

Isopropanolamine (1-Amino-2-propanol) is a colorless to yellowish liquid with an amine-like odor. It is miscible in water. Intermediate used in the production of dyes, lubrification oils, corrosion inhibitor, detergents, cutting fluids.
Status:
Investigational
Source:
NCT00085826: Phase 3 Interventional Completed Non-Small Cell Lung Cancer
(2001)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Exisulind (tentative trade name Aptosyn) is an antineoplastic agent, which was originally developed by Cell Pathways. This drug is an inhibitor of phosphodiesterase (PDE) isozymes: PDE5 and PDE4. Inhibition of PDE5 appears to be pharmacologically relevant, which leads to increase cGMP and activate protein kinase G at doses that induce apoptosis, whereas cyclic AMP levels were not changed. Exisulind has been in phase III clinical trials for the treatment of Non-Small Cell Lung Cancer and for the treatment of polyps in patients who have familial adenomatous polyposis (Colorectal Cancer and Small Intestine Cancer). In addition, this drug was in phase II/III for the treatment of Prostate Cancer, however, there studies have been discontinued.
The BET-bromodomain inhibitor OTX015 (MK-8628) was initially developed by Mitsubishi Tanabe Pharma Corporation, but then was licensed by OncoEthix, privately held biotechnology company. OTX015 is a selective bromodomains: BRD2, BRD3, and BRD4 inhibitor and inhibits their binding to AcH4. Bromodomains have an important role in the targeting of chromatin-modifying enzymes to specific sites, including methyltransferases, HATs and transcription factors and regulate diverse biological processes from cell proliferation and differentiation to energy homeostasis and neurological processes. OTX015 has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models. Oral administration of OTX-015 markedly inhibited tumor growth and reduced tumor volume. OTX015 is currently in Phase 1b studies for the treatment of hematological malignancies and advanced solid tumors such as Triple Negative Breast Cancer, Non-small Cell Lung Cancer, Castrate-resistant Prostate Cancer (CRPC) and Pancreatic Ductal Adenocarcinoma. In addition, OTX015 was in phase II for the treatment of Glioblastoma Multiforme, but there were not detected clinical activity of the drug in the treatment populations and trial was closed.

Showing 231 - 240 of 911 results