U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 11 results

Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefodizime is a third-generation cephalosporin with a broad spectrum of antibacterial activity. Administered intravenously or intramuscularly 1 to 4 g of cefodizime daily for an average of 7 to 10 days produces a clinical cure in 80 to 100% of patients (adults, elderly or children) with upper or lower respiratory tract infections or urinary tract infections. In comparative trials cefodizime was as effective as other third generation cephalosporins. A single dose of cefodizime (1 or 2 g) is also useful in treating lower urinary tract infections. Urogenital gonorrhoea, whether caused by beta-lactamase producing or non-beta-lactamase producing Neisseria gonorrhoeae, is very effectively treated by single dose therapy with intramuscular cefodizime. Preliminary data from a small number of patients indicates that cefodizime may also be useful in the treatment of otitis media, sinusitis and gynaecological infections, and for the prophylaxis or treatment of surgical infections. The clinical efficacy of cefodizime compared to other third generation cephalosporins is superior to that predicted from in vitro results. This superior activity of cefodizime may be related to the relatively long elimination half-life of the drug or its ability to modify some functions of the immune system--a potentially important finding awaiting further investigation. Cefodizime is well tolerated and has a tolerability profile similar to other members of its class with systemic adverse events being primarily gastrointestinal or dermatological. Cefodizime may be more convenient to administer than some other agents of its class as it may be given once or twice daily. While there are no trials comparing cefodizime to other third generation cephalosporins in immunosuppressed populations, preliminary information indicates cefodizime may be useful in this group. Cefodizime targets penicillin-binding proteins (PBPs) 1A/B, 2, and 3 resulting in the eventual death of the bacterial cell. In vivo experimental models of infection showed that bacterial clearance by this drug is at least as effective compared with other 3rd generation cephalosporins. It has a similar adverse effect profile to other 3rd generation cephalosporins which is mainly being limited to gastrointestinal or dermatological side effects. It is not currently approved by the FDA for use in the United States.
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.

Showing 1 - 10 of 11 results