{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Showing 1 - 8 of 8 results
Status:
US Approved Rx
(2013)
Source:
NDA021876
(2013)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. In preclinical or clinical trials PM has demonstrated pharmacological potential
for treatment of diabetic nephropathy, diabetic retinopathy, and hyperlipidemia, and
for use in kidney stone preventive therapies. Although its precise mode of action in
vivo is not yet clear, it is likely that at least three mechanisms are at play: inhibition
of post-Amadori steps of the Maillard reaction; scavenging of reactive carbonyl
compounds; and inhibition of toxic effects of ROS. Pyridoxamine was marketed as a dietary supplement, often as the hydrochloride salt, pyridoxamine dihydrochloride. However, in the United States, the FDA ruled in January 2009 that pyridoxamine must be regulated as a pharmaceutical drug because it is the active ingredient in Pyridorin, a drug designed to prevent the progression of diabetic nephropathy.
Status:
US Approved Rx
(2013)
Source:
NDA021876
(2013)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.
Status:
US Approved Rx
(2013)
Source:
NDA021876
(2013)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. In preclinical or clinical trials PM has demonstrated pharmacological potential
for treatment of diabetic nephropathy, diabetic retinopathy, and hyperlipidemia, and
for use in kidney stone preventive therapies. Although its precise mode of action in
vivo is not yet clear, it is likely that at least three mechanisms are at play: inhibition
of post-Amadori steps of the Maillard reaction; scavenging of reactive carbonyl
compounds; and inhibition of toxic effects of ROS. Pyridoxamine was marketed as a dietary supplement, often as the hydrochloride salt, pyridoxamine dihydrochloride. However, in the United States, the FDA ruled in January 2009 that pyridoxamine must be regulated as a pharmaceutical drug because it is the active ingredient in Pyridorin, a drug designed to prevent the progression of diabetic nephropathy.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. In preclinical or clinical trials PM has demonstrated pharmacological potential
for treatment of diabetic nephropathy, diabetic retinopathy, and hyperlipidemia, and
for use in kidney stone preventive therapies. Although its precise mode of action in
vivo is not yet clear, it is likely that at least three mechanisms are at play: inhibition
of post-Amadori steps of the Maillard reaction; scavenging of reactive carbonyl
compounds; and inhibition of toxic effects of ROS. Pyridoxamine was marketed as a dietary supplement, often as the hydrochloride salt, pyridoxamine dihydrochloride. However, in the United States, the FDA ruled in January 2009 that pyridoxamine must be regulated as a pharmaceutical drug because it is the active ingredient in Pyridorin, a drug designed to prevent the progression of diabetic nephropathy.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. In preclinical or clinical trials PM has demonstrated pharmacological potential
for treatment of diabetic nephropathy, diabetic retinopathy, and hyperlipidemia, and
for use in kidney stone preventive therapies. Although its precise mode of action in
vivo is not yet clear, it is likely that at least three mechanisms are at play: inhibition
of post-Amadori steps of the Maillard reaction; scavenging of reactive carbonyl
compounds; and inhibition of toxic effects of ROS. Pyridoxamine was marketed as a dietary supplement, often as the hydrochloride salt, pyridoxamine dihydrochloride. However, in the United States, the FDA ruled in January 2009 that pyridoxamine must be regulated as a pharmaceutical drug because it is the active ingredient in Pyridorin, a drug designed to prevent the progression of diabetic nephropathy.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyridoxamine (PM) is one of three natural forms of vitamin B6. It is a critical transient intermediate in catalysis of transamination reactions by vitamin B6-dependent enzymes. In preclinical or clinical trials PM has demonstrated pharmacological potential
for treatment of diabetic nephropathy, diabetic retinopathy, and hyperlipidemia, and
for use in kidney stone preventive therapies. Although its precise mode of action in
vivo is not yet clear, it is likely that at least three mechanisms are at play: inhibition
of post-Amadori steps of the Maillard reaction; scavenging of reactive carbonyl
compounds; and inhibition of toxic effects of ROS. Pyridoxamine was marketed as a dietary supplement, often as the hydrochloride salt, pyridoxamine dihydrochloride. However, in the United States, the FDA ruled in January 2009 that pyridoxamine must be regulated as a pharmaceutical drug because it is the active ingredient in Pyridorin, a drug designed to prevent the progression of diabetic nephropathy.