U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 16 results

Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Rifabutin is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. It is FDA approved for the prophylaxis of disseminated Mycobacterium avium complex (MAC) disease in patients with advanced HIV infection. Multiple dosing of rifabutin has been associated with induction of hepatic metabolic enzymes of the CYP3A subfamily. Rifabutin’s predominant metabolite (25-desacetyl rifabutin: LM565), may also contribute to this effect. Similarly, concomitant medications that competitively inhibit the CYP3A activity may increase plasma concentrations of rifabutin. Common adverse reactions include discoloration of skin, rash, diarrhea, disorder of taste, indigestion, loss of appetite, nausea, vomiting, increased liver aminotransferase level (mild), ocular discoloration, uveitis, abnormal color of body fluid.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Saquinavir (brand names Invirase and Fortovase) is an antiretroviral drug used together with other medications to treat or prevent HIV/AIDS. Saquinavir is an inhibitor of HIV protease. HIV protease is an enzyme required for the proteolytic cleavage of viral polyprotein precursors into individual functional proteins found in infectious HIV. Saquinavir is a peptide-like substrate analog that binds to the protease active site and inhibits the activity of the enzyme. Saquinavir inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature noninfectious virus particles. The most frequent adverse events with saquinavir in either formulation are mild gastrointestinal symptoms, including diarrhea, nausea, loose stools & abdominal discomfort. Invirase is better tolerated than Fortovase.
Hypericin (4,5,7,4',5',7'-hexahydroxy-2,2'-dimethylnaphtodianthrone) is a naturally occurring chromophore found in some species of the genus Hypericum, especially Hypericum perforatum L. (St. John's wort), and in some basidiomycetes (Dermocybe spp.) or endophytic fungi (Thielavia subthermophila). Among its antidepressant and light-dependent antiviral actions, hypericin is a powerful natural photosensitizer that is applicable in the photodynamic therapy (PDT) of various oncological diseases. Hypericin may act as an inhibitor of enzymes such as MAO (monoaminoxidase), PKC (protein kinase C), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450), has yielded results supporting therapeutic potential. Research of hypericin and its effect on GABA-activated (gamma amino butyric acid) currents and NMDA (N-methyl-D-aspartat) receptors also indicate the therapeutic potential of this substance whereby new insights in stroke research (apoplexy) are expected. Topical SGX301 (synthetic hypericin as a potent photosensitizer in photodynamic therapy) is in phase 3 for the treatment of cutaneous T-cell lymphoma.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (RACEMIC)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.

Showing 1 - 10 of 16 results